

September 2025

Annual Review

Marulan South Limestone Mine Continued Operations Project Boral Cement Limited

Table of Contents

1.	STATEMENT OF COMPLIANCE	5			
2.	INTRODUCTION	8			
2.1.	Project Description				
2.2.	Key Personnel				
3.	APPROVALS	10			
-	anning Consent				
	ining Approvals				
	Consolidated Mining Lease No. 16				
	Mining Lease 1716				
	Mining Lease 1857				
	Rehabilitation Management Plan				
	nvironmental Protection Licence (EPL) 944				
	ther Licences				
4.	OPERATIONS SUMMARY	13			
4.1 Mi	ining				
	ineral Processing				
	affic and Transportation				
	aste Management				
	mestone and Lime Product Stockpiles				
	azardous Material Management				
4.7 Ex	kploration	15			
4.8 Re	eserve and Resource Status	16			
4.9 Es	stimated Mine Life	16			
5.	ACTIONS REQUIRED FROM PREVIOUS AR	18			
6.	ENVIRONMENTAL PERFORMANCE	19			
6.1 En	nvironmental Management Plans	19			
6.2 Me	eteorological Monitoring	19			
6.3 Ra	ainfall	19			
6.2.2	6.2.2 Temperature				
6.3 Air	6.3 Air Quality				
6.3.1	6.3.1 Assessment Criteria				
6.3.2 Kiln and Hydration Stack Monitoring					
6.3.3 [S.3.3 Dust Deposition				

6.3.4 Particulate Matter	24
6.4 Biodiversity	27
6.4.1 Clearing of Vegetation	27
6.4.2 Biodiversity Offsets	28
6.5 Vibration and Air blasting	29
6.6 Operational Noise	33
6.7 Aboriginal Heritage	35
6.8 Combustion Risk and Management	35
6.9 Bushfire	36
6.10 Geotechnical Stability	36
6.11 Hydrocarbon Contamination	37
6.12 Public safety	37
7. WATER MANAGEMENT	39
7.1 Erosion and Sediment Management	
7.1.1 Sewerage Waste Management	
7.2 Surface Water Management	
7.2.1 Pollution Control Strategies	
7.2.2 Pollution Control Storages	
7.2.3 Surface Water Monitoring and Reporting	
7.2.4 Aquatic Biodiversity Monitoring	
7.2.5 Future Improvements	
7.3 Groundwater Management	49
7.3.1 Monitoring and Reporting	49
7.3.2 Groundwater Levels	51
7.3.4 Future Improvements	54
7.3.5 Verification	54
7.4 Water Access Licences and Water Take	55
8 REHABILITATION STRATEGY	56
8.1 Rehabilitation Risk Assessment	
8.2 Rehabilitation Objectives	
8.3 Site Domains	
8.4 Rehabilitation of Disturbed Land	
8.4.1 Seed Sources and Application	
8.4.2 Rehabilitation Activities	
8.4.3 Feral Animal Control	
8.4.4 Weed Management	
8.5.5 Rehabilitation Monitoring – Ecosystem Functionality Analysis	
	2

8.5.	.6 Rapid Visual Assessment	62
8.5.	.7 Progressive Rehabilitation Strategy	64
8.6	Further Development of the Final Rehabilitation Plan	65
9	COMMUNITY RELATIONS	67
9.1	Environmental Complaints and Enquiries	67
9.2	Community Liaison	67
9.3	Community Involvement	68
10	INDEPENDENT AUDIT	68
11	INCIDENTS AND NON-COMPLIANCES	71
12	ACTIVITIES PROPOSED FOR NEXT PERIOD	73
11.1	1 Current Approved Management Plans and Strategies	73
11.2	2 SSD7009 Post Approval Requirements	73
11.3	3 Rehabilitation Activities Planned for 2024-25	74
11.4	4 Mining Operations	74
A	APPENDIX A	82
E	EPA Licence	82
A	APPENDIX C	84
E	Ecosystem Function Analysis	84
5	Surface Water Monitoring and River Health	85
A	APPENDIX E	86
A	Annual Groundwater Report	86

ANNUAL REVIEW INFORMATION

Annual Review Authorisation

Name of Operation Marulan South Limestone Mine

Name of Operator **Boral Limited** Development Consent No. SSD 7009

Name of holder of development consents **Boral Cement Limited**

Mining Lease ML1857

Name of Holder of Mining Lease **Boral Cement Limited**

WAL25207, WAL25373, WAL25352, Water Licence

WAL24697, WAL41976 Name of Holder of Water Licence **Boral Cement Limited** Currently under review

Annual Review start date 01 Jul 2024 Annual Review end date 30 Jun 2025

I, Greg Johnson, certify that this audit report is a true and accurate record of the compliance status of the Marulan South Limestone Mine for the period 1 Jul 2024 to 30 June 2025 and that I am authorised to make this statement on behalf of Boral Cement Limited.

Note

RMP

- a. The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual \$250,000.
- b. The Crimes Act 1900 contains other offences relating to false and misleading information: section 192G (intention to defraud by false or misleading statement – maximum penalty 5 years imprisonment); sections 307A, 307B and 307C (False or misleading applications/ information/ documents – maximum penalty 2 years imprisonment of \$22,000, or both).

Name of authorised reporting officer Greg Johnson

Title of authorising reporting officer Senior Environmental Business Partner NSW/ACT

Signature of authorised reporting officer

30 September 2025 Date

1. STATEMENT OF COMPLIANCE

This Annual Review (AR) summarises compliance with State Significant Development Approval (SSD) 7009 which was granted by the NSW Department of Planning, Industry and Environment on 19 August 2021. Mining operations commenced under this consent on 1st January 2023. The following Mining Authorisations, Rehabilitation Management Plan and EPL are also applicable to the Marulan South Limestone Mine Continued Operations Project:

- ML1716 (relinquished 17/7/2023);
- CML16 (relinquished 3/12/2024)
- ML1857 (granted 14/7/2023)
- Marulan South Limestone Mine Rehabilitation Management Plan (RMP) 2023-2026; and
- Environment Protection Licence 944.

This report has been prepared in accordance with the *Post-approval requirements for State significant mining developments Annual Review Guideline* (2015) (the Guideline). Tables 1.1 to 1.3 detail the compliance status of Marulan South Limestone Mine during the 2024 to 2025 reporting period.

Table 1.1 - Compliance Summary 2024/2025

SSD 7009	Three non-compliances, see Table 1.2 and Section 10		
ML1857	Conditions satisfied		
CML 16	Conditions satisfied		
RMP 2023-2026	Conditions satisfied		
EPL 944	Three non-compliances, see Table 1.2 refer Section 10		

Table 1.2 - Non-Compliance

Approval	Condition	-	Compliance Status		Where addressed
SSD 7009		Within 12 months of the date of commencement of development under this consent, or other timeframe agreed by the Planning Secretary, the Applicant must surrender the existing development consents. dated 21 February 1972, 16 October 1974, 13 February	compliant	Extension to surrender remaining 6 consents granted by DPHI to the 30 th Dec 2025.	Section 10

	1995 and 22 May 1997, April 2008, 20 June 2006 and 1 March 2012 as detailed in Section 3.3.4 of the EIS, and any existing or continuing use rights for the site, in accordance with the EP&A Regulation.			
SSD 7009	Unless otherwise agreed by Council, the Applicant must not dispatch more than 75 laden trucks per day or 5 laden trucks per hour from the site, until Marulan South Road is upgraded as described in documents A2(c)		Exceedances of the daily truck limit were recorded,on the 4th September 2024 of 13 truck movements and 9th September 2024 of 7 truck movements. The exceedances were reported to DPHI on the 8th October 2024. The resulting action was to ensure all records were kept of truck movements from site. A review of the Traffic Management Plan was triggered and completed.	Section 10
SSD 7009	The Applicant must impliment the Biodiversity Management Plan as approved by the Planning Secretary	Non- compliant	No Rapid Visual Assessment (RVA) was made in the Closed Catchment area known as Black Dam since the Biodiversity Management Plan was approved in 2022 where one RVA each spring is required. A review of the RVA will be undertaken in consultation with an ecologist. The Management Plan will be updated to reflect improvements and submitted to the Department for approval.	Section 10
EPL 994	[· · · · · · · · · · · · · · · · · · ·	compliant	An internal Courier process change resulted in samples unavailable for the November monitoring round. This was reported in the 2025 Annual Return. Chain of Custody improvements have been made to prevent sample loss in future.	Section 10
EPL 994	•	compliant	A PM2.5 exceedance dated 17th December 2024 and was reported to DPHI on the 20th February 2025. After discussion with the EPA it was determined that the location of the sampler can be improved to meet the Air Quality Management Plan requirement of being located on the boundary of the project, and an alternative location has been discussed with the EPA. Relocation is progressing.	Section 10

Point 1 in a 24 hour period the 100 percentile concentration limit for PM10 is 50 micrograms per cubic meter, and 25 micrograms per cubic meter for PM2.5. Non-compliant A PM2.5 and PM10 exceedance dated 10th April 2025 was reported to DPHI on the 20th May 2025. After discussion with the EPA it was determined that the location of the sampler can be improved to meet the Air Quality Management Plan requirement of being located on the boundary of the project, and an alternative location has been discussed with the EPA. Relocation is progressing.	
---	--

Table 1.3 Compliance Status Key

Risk Level	Code	Description	
High	Non-compliant	Non-compliance with potential for significant environmental consequences, regardless of the likelihood of occurrence.	
Medium	Non-compliant	Non-compliance with: • potential for serious environmental consequences, but is unlikely to occur; or • potential for moderate environmental consequences but is likely to occur.	
Low	Non-compliant	Non-compliance with: • potential for moderate environmental consequences, but is unlikely to occur; or • potential for low environmental consequences but is likely to occur.	
Administrative non-compliance	Non-compliant	Only to be applied where the non-compliance does not result in any risk of environmental harm (eg submitting a report to government later than required under approval conditions).	

Pre-commencement conditions associated with SSD 7009 were satisfied in the 2022 reporting period allowing commencement of the new approval on 1st January 2023. This Annual Review has therefore been prepared in accordance with Clause D11 of SSD 7009.

2. INTRODUCTION

2.1. Project Description

Boral's Marulan South Limestone Mine has been operational since the 1860s, consisting of a limestone mine and processing plant (Figure 1). It is located directly to the north of Bungonia Gorge and approximately 35km east of Goulburn NSW, with lands covering 650 hectares of a significant limestone and granodiorite deposit (Figure 2). Resources over a total of 616.5 hectares of land are to be extracted under SSD 7009 (Figure 3).

The mine produces a range of limestone products for the cement and steel industry as well as the construction, agricultural and industrial markets across the state. Limestone is an essential ingredient in cement and steel manufacture while a component is further processed on site to produce Calcium Oxide and Hydrated Lime for various applications such as water purification, mining, asphalt production and soil stabilisation. Crushed Limestone is transported by rail direct to the Boral Cement Works at Berrima, or to Bluescope Steel at Port Kembla. Limestone supplied to the Peppertree Quarry forms a key part of manufactured sand for concrete and Limestone and fine limestone are also widely used in the agricultural industry for neutralising soils and for animal feed. Lime products are distributed typically by road tanker to destinations throughout NSW or by container to Queensland and Victoria. A component of the mine production including clay shale and aggregates is transported directly by truck where rail facilities are not available. Marulan South Limestone Mine operates 24 hours per day, 7 days per week and employs approximately 95 full time personnel.

Boral received approval for the Marulan South Limestone Mine Continued Operations State Significant Development Application (SSDA) on the 19th August 2021 which came into force on 1st January 2023 with the completion of various pre-conditions including the approval of various management plans for the operation. The approval provides a modern planning consent consistent with current legislative requirements which covers a 30 year mine plan representing 120 Mt of limestone at an extraction rate of 4 Mtpa. Clay shale will also be extracted at a rate of up to 200,000 tpa. The new mine plan seeks to incorporate rehabilitation and final landform initiatives with overburden emplacement.

The continued operations of the mine will provide an uninterrupted supply of construction materials to local and regional industries and state projects with an optimal use of regionally significant resources. The mining project is expected to provide economic benefits to the local community through the purchase of goods, local expenditure, and continued employment of almost 200 people, both directly and indirectly associated with the mining operations.

This Annual Review has been prepared in accordance with Condition D11 of SSD 7009 and covers the operation over the 2024-2025 period. This review has been structured in accordance with the Department of Planning and Environment guidelines for the preparation of Annual Reviews.

2.2. Key Personnel

Details of the management personnel at Marulan South Limestone are provided in Table 2.1 below. Additional specialist advice is provided as required by a range of environmental consultants.

Table 2.1 – Mine Contacts

Role	Name	Contact
Marulan Limestone Site manager	- '	Ph: 0417 019 358 Email: anneelisabeth.champon@boral.com.au
Production Manager Statutory Quarry manager		Ph: 0401 895 212 Email: jamie.whittaker@boral.com.au

Mine Engineer	Therese Thomas	Ph: (02) 4820 3007
		Email: therese.thomas@boral.com.au
Senior Environmental Business Partner		Ph: (02) 9033 4916 Email: greg.johnson@boral.com.au
Environmental and Stakeholder		Ph: (02) 4820 3007
Advisor		Email: crystal.perry@boral.com.au

3. APPROVALS

This chapter describes the approval platform for the Marulan South Limestone Mine along with other mining and statutory approvals relevant to the ongoing operation.

3.1 Planning Consent

The Marulan South Limestone Mine operates under SSD 7009 which overrides the previous five development consents issued by Goulburn Mulwaree Council (Appendix B). The current approval was the subject of an Environmental Impact Statement and State Significant Development Application covering all existing and future operations for a 30-year period until 31 August 2051. The approval allows for the extraction of up to 4 million tonnes per annum (tpa) of limestone, extraction of up to 200,000 tpa of clay shale and the processing of the lime products (hydrated lime and quick lime) limestone aggregates and sand.

The mine footprint focuses on an expansion of the pit westwards to mine the Middle Limestone, eastwards and deeper to mine into the mainLimestone. As the Middle Limestone lies approximately 70-150 m west of the Main Limestone, the 30-year mine plan avoids mining where practical the interburden between these two limestone units thereby creating a smaller second, north-south oriented west pit with a ridge remaining between. The north pit will also be expanded southwards, encompassing part of the south pit, leaving the remainder of the south pit for overburden emplacement and a visual barrier. The approval allows for accessing approximately 120 Mt of limestone down to a depth of 335m.

3.2 Mining Approvals

3.2.1 Consolidated Mining Lease No. 16

Consolidated Mining Lease No. 16 (CML16) was granted on the 23 April 2004 for the purpose of prospecting and mining for agricultural lime, clay/shale, iron minerals, limestone, marble, and structural clay. CML16 is the consolidation of 66 leases that allows mining operations at Marulan South Limestone Mine with an expiration date of 26 February 2023. An application was made to extend the expiration date ensure continuity of mining authorisations over areas to be covered by grant of the new mining lease (ML 1857) and those remaining or remnant areas of CML 16 no longer required under mining lease (approximately 75 hectares). These remnant areas provided security of tenure over a water supply pipeline while Boral securedeasement where it traverses private property. CML16 was relinquished on the 3rd December 2024

3.2.3 Mining Lease 1716

ML1716 was granted on the 4 September 2015 to remove a depth restriction on 12.04 hectares on the Eastern Batters within CML16. The lease was granted for a period of 21 years for mining clay/shale, iron minerals, limestone, marble, and structural clay. ML1716 was cancelled on 14th July 2023 when the new ML1857 was granted for the mining operations as the new lease covers the proposed mining disturbance area including all of the previous ML1716 area.

3.2.3 Mining Lease 1857

ML1857 was granted on 14th July 2023 for a term of 21 years and covers an area of 688.5 hectares. This ML1857 covers the new mining and associated ancillary activity areas as covered by SSD7009 for the Continued Operations Project that were not already covered by CML16.

3.2.4 Rehabilitation Management Plan

A Rehabilitation Management Plan (RMP) was prepared for the mine under the new regulatory framework established by the Mining Amendment (Standard Conditions of Mining Leases – Rehabilitation) Regulation 2021. The RMP came into effect on the 14th July 2023.

3.3 Environmental Protection Licence (EPL) 944

Boral Cement Limited holds EPL 944 for the "Marulan South Limestone Mine and Lime Plant" (Appendix A). The EPL allow for between 100,000 and 250,000 tpa of cement or lime production and between 2 and 5 million tpa of minerals production by mining. Commencement of development under of the SSD7009 consent triggered a revision and variation of the EPL in order to align new consent conditions placed on the operation with those in the EPL. This update occurred in March 2023. As part of this review an additional dust deposition gauge was added to the licence as well as the requirement for a weather station within the premises. There was a minor variation to the EPL during the reporting period adjusting the load based licence limits

3.4 Other Licences

In addition to SSD7009, mining leases and EPA licence, the following activities and items are licenced:

Table 3.1 - Site Licences

Description	Licence No	Licence Authority	Renewal
Explosive Licence to Import	11-100005-004	Safe Work NSW	Held by Orica
Acknowledgement of Notification of Dangerous Goods on Premises	35/008099	Safe Work NSW	N/A
Revised Apparatus Licence	1203917 1958988 & 1958989 9922223	A.C.M.A.	21/07/2026 23/01/2026 22/02/2026
Radiation Management Licence	5061123	NSW EPA	21/08/2026
Refrigerant Trading Authorisation Certificate	AU 04450	ARC	10/03/2027
Certificate of Plant Item Registration	MC 6-82896/05/0	Safe Work NSW	16/10/2025
Water Access Licences Works Approval Licences Reference	17)	NSW Department of Primary Industries Office	Continuing
Number	10AL102350 10AL102376 10WA122922 10WA124508 (WB07)	of Water	3 Dec 2028
Water Supply Works – two bores	10CA123795 (WB08)	NRAR	08 Apr 2030
Monitoring Bore Licences	10BL605442 10BL605443 10BL605444 10BL605445 10BL605449 (MW3S & MW3D) 10BL605450	NSW Department of Primary Industries Office of Water	Licence 10AL116141D Perpetuity

	10BL605944 (MW9) 10BL605945 (MW8)		
Surface Water Licence (1 x Overshot Dam & 2 Pumps)	10WA102352 pump to overshot dam (Shoalhaven River water source) 10AL102350 - WAL 25352 Stock and domestic (1ML Barbers	Industries Office of Water	30/06/2034
Surface Water Licence (1 x 38mm Centrifugal Pump)	10AL102376 WAL 25373	NSW Department of Primary Industries Office of Water	25/04/2026
Local Land Services ACT 2013 - Rate Notice	Ref: 110324316	NSW Government Office of Local Land Services	1/5/2026

4. OPERATIONS SUMMARY

This chapter summarises the production and processing operations during the 2024-25 reporting period. Historic production levels are also provided for completeness.

4.1 Mining

Table 4.1 provides a summary of production during the reporting period. Production is described as annual tonnages of Limestone, clay/shale and overburden/waste.

Table 4.1 - Mine Production

Material	Limestone (Tonnes)	Clay/shale (Tonnes)	Overburden (tonnes)
2024/2025	2,372,098	91,134	5,329,734

Overburden removal of 5.3 million tonnes occurred during the 2024/2025 period. Total production of limestone and clay/shale was within the approved limit of 4 million and 200 000 tonnes per annum respectively.

Limestone and (overburden as required) is mined using drilling and blasting methods while clay shale is free dug. Both are loaded by an excavator or front-end loader. Limestone, clay shale and overburden are transported to the primary crusher, stockpile areas and overburden emplacement areas using the load and haul fleet of front-end loaders, excavators and trucks on site. Limestone is selected from particular areas within the mine and blended together with shale when required at the face, within stockpiles and during the crushing and screening process. Limestone quality is monitored using laboratory analysis of drill hole cuttings and online using Geoscan technology. Limestone extraction has focused on the northern end of North Pit in the just 6 months and on the middle limestone on the Western Batters and Center Ridge for the last 6 months. Overburden has been removed formt eh Eastern Batters and the Western batters in equal quantities. In-pit overburden emplacement continued in South Pit and in addition at the northern elevation dumps.

A new Trommel was commissioned in March 2025 and is designed to extract Limestone that had not been able to be extracted with the crusher due to the clay content. The recovery rate of this limestone from the overburden using the Trommel is at 40%.

4.2 Mineral Processing

During the 2024/2025 reporting period the lime manufacturing plant produced the following tonnages of Quicklime, Hydrated Lime and Waste Lime. (Table 4.2).

Table 4.2 - Lime Production

Material	Quicklime (Tonnes)	Hydrated Lime (Tonnes)	Waste Lime (tonnes)
2024/25	65,550.9	52,672.5	3,090

Lime production varies according to market demand and the current reporting period production levels are in line with recent years. There are no individual limits on Lime production however these are used in combination with total production and transport of products from the site.

4.3 Traffic and Transportation

The approved transportation limits compared to the actual tonnages is provided in Table 4.3.

Table 4.3 Transportation Compliance

Condition		Transported Tonnage FY24
Δu	A maximum of 1 million tonnes of manufactured sand may be transported to Peppertree Quarry in any financial year	352,359
	A maximum of 150,000 tonnes of quarry products may be transported from Peppertree Quarry to the shared road sales stockpiling area in any financial year	39,781
	A maximum of 720,000 tonnes of limestone, clay/shale and quarry products (combined) may be transported from the site by road in any financial year	386,904

Boral is currently permitted to despatch laden trucks from "the site" under SSD-7009 (including the shared road sales stockpile area that also benefits Peppertree) within the following parameters:

On school days, no more than 15 laden trucks per hour between:

5:30am and 7:30am and

8:30am and 4:00pm, and

No more than 5 laden trucks per hour:

On school days between 7:30am and 8:30am, and

Between 4:00pm on any day preceding a school day and 5:30am the following school day, and

On days that are not school days and do not precede a school day:

No more than 15 laden trucks per hour between 5:30am and 4:00pm,

No more than 5 laden trucks per hour between 4:00pm on any day and 5:30am the following day, and No more than 75 laden trucks in total on any day

As shown in Table 4.3, total product transported by road complies with limits provided by Conditions A9 to A11. Additional limits are provided on 24-hour intervals by Conditions A12 and A13. Condition A12 provides for a maximum of 133 laden trucks to be dispatched from the site in any 24-hour period while Condition A13 provides for a maximum of six laden trains leaving the site in any 24-hour period. However, Condition B88 restricts road movements to 75 trucks per day until Marulan South Road has been realigned and reconstructed. Details of 24-hour movements are provided in Table 4.4 along with monthly movements to show typical variations over the reporting period.

Table 4.4 – Monthly Truck and Train Movements (Total and Maximum per 24hrs)

	TRUCK		TRAIN		
	Monthly Movements	Maximum movements/24h	Monthly Movements	Maximum movements/24h	
Jul-24	1189	74	112	7	
Aug-24	921	67	95	59	
Sep-24	1176	88	100	6	
Oct-24	878	57	110	7	
Nov-24	1086	71	118	9	
Dec-24	202	13	84	6	
Jan-25	918	68	15	43	
Feb-25	1088	73	84	5	
Mar-25	1225	71	110	8	
Apr-25	942	66	127	7	
May-25	822	53	125	8	
Jun-25	710	55	89	6	

As required by section 7.11 of the EP&A Act, financial contributions are paid to Council to put toward the cost of maintenance of Marulan South Road which is used for haulage of mining and quarry products. The contributions calculated in accordance with the Goulburn Mulwaree Section 94 Development Contributions Plan 2009. As agreed with Council, contributions for haulage of mining and quarry products under the Continued Operation Project will be calculated and paid in accordance with this plan from 1/1/2024. Contributions prior to this were calculated based on the methodology for the previous DA and paid quarterly. In the reporting period (FY25) a total of\$94,650 was paid in Council contributions.

On the 4th September 2024 there were 13 truck movements above the daily limit and on 9th September 2024 there were 7 truck movements above daily limit contrary to Condition B88 of the consent. The incidents were reported to DPHI on the 8th October 2024. DPHI responded on the 14 October 2024 with no actions required other than to keep records. This triggered a review of the Traffic Management Plan which was completed.

4.4 Waste Management

Domestic and light industrial waste continues to be deposited in large dumpsters which are collected weekly by a licensed waste removal contractor.

All runoff from the workshop is channelled through an oil and grease separator. Recovered grease and oil material is collected and stored for removal by a licensed recycling contractor. Similarly, grease drums and oil filters are stored until collected and disposed of for recycling by a licensed contractor.

Reject lime continues to be placed in the designated area of the Middle Gully waste emplacement and investigations continue for reuse of this material to minimise on-site disposal.

4.5 Limestone and Lime Product Stockpiles

Since the removal of the larger stockpiling area, the stockpiling capabilities have been reduced to 20,000t for primary and secondary crushed/screened stone and 35,000t for finished goods stockpiles, giving a total stockpiling capability of 55,000t. The limestone bin capacity for rail dispatch is approximately 6 tonnes. Lime product storage capacity is 1,600 tonnes of quicklime and 700 tonnes of hydrated lime.

4.6 Hazardous Material Management

There are multiple hazardous chemical facilities at the mine with two diesel, two LPG, one compressed gas, and one distillate depot which are maintained in accordance with the Work Safe NSW Acknowledgement of Notification of Dangerous Goods on Premises Licence 35/008099. Explosives used for blasting are supplied by the contractor as necessary and not stored on site.

As required, all enclosures to fuel facilities are bunded to meet AS 1940 Storage and Handling of Flammable and Combustible Liquids, 2017 and hazardous materials and chemicals facilities are inspected at least annually by an external accredited inspector.

4.7 Exploration

GeoRes was engaged in 2023 to assist with the Phase 8 (P8) drilling program. The P8 drilling program was undertaken early in 2024 with an aim to provide information which could not be obtained during the prior drilling program, involving a small Reverse Circulation (RC) exploration program. A series of 7 RC drill holes for 902 m were drilled. Four of these drill holes traversed the Eastern Limestone Blocks 5 and 6, two holes were drilled to address Eastern Limestone Block 5 and its boundary with Block 4 to the south and the last hole was drilled into the Middle Limestone in search of groundwater. The geological mapping was considered highly successful in better delineating rock exposures, as reliable interpretations of limestone shapes below ground were achieved.

The two planned vertical water monitoring bores were installed in the reporting period. MW09 was installed in January 2025 and MW08 was installed in February 2025. These bores form part of the commitments of the Water Management Plan.

4.8 Reserve and Resource Status

The Marulan South limestone resource is significant, with current estimates in the order of 640 million tonnes. SSD7009 has secured 120 million tonnes which will be extracted over a 30-year period.

4.9 Estimated Mine Life

Current studies undertaken as part of the SSD demonstrated that the limestone resource is extensive and can support at least a 30-year mine plan at an extraction rate of 4 Mtpa. The resource will not be exhausted at this time and depending on market conditions at the time, further approvals may be sought to continue extraction.

4.10 Land Preparation

A combined total of 12.35 hectares were cleared; shown on Plate 1 below during the 2024/2025 reporting period.

Plate 1- Vegetation Cleared in reporting period 2024-2025.

4.11 Construction

Minor construction projects are currently in progress or planned for the coming reporting period. These projects are required to support the ongoing operation and include:

- Establishment of water control structures in association with surface water management plans;
- Installation of water tanks to supply fresh water to buildings;
- · Ongoing replacement/upgrade of dust control systems; and
- General maintenance of processing facilities.

SSD 7009 provides approval on the construction of a new in-stream water supply dam on Marulan Creek to supplement the water supply and will include associated infrastructure such as an overland pipeline and pump station. The commencement date on this construction project is yet to be determined and will be reported in coming Annual Reviews.

Other future construction projects will include the realignment of Marulan South Road, relocation of the stockpile reclaim area and relocation of the high voltage transmission line. These will be constructed as required in coming reporting periods.

Three sheds opposite the Administration Office on Hume St were demolished as they were deemed unsafe. They were replaced with temporary fencing, with permanent fencing to follow.

5. ACTIONS REQUIRED FROM PREVIOUS ANNUAL REVIEW

This document represents the Annual Review prepared under Condition D11 of SSD7009 Consent which will be submitted to the Department of Planning, Housing and Infrastructure and Council. The 2023/2024 Annual Review was accepted by the DPHI on the 24th October 2024. Two actions were requested from the AR as follows:

- Review and revise the strategies, plans, and programs required under the consent and submit for Planning Secretary's approval, in accordance with Schedule 2, Condition D7 of the consent.; and
- In accordance with Schedule 2, Condition D17 of the consent, make a copy of the Annual Review available on the company website, including any other documents as required under Condition D17 and also ensure that these documents are up to date.

Review of the management plans was undertaken as required and the Annual Review made available on the company website.

6. ENVIRONMENTAL PERFORMANCE

This Chapter provides details of the environmental outcomes that were intended for the reporting period and whether these were achieved. This section identifies the requirements of any specific management plan other than water management and rehabilitation which are dealt with under Chapter 7 and 8 respectively.

6.1 Environmental Management Plans

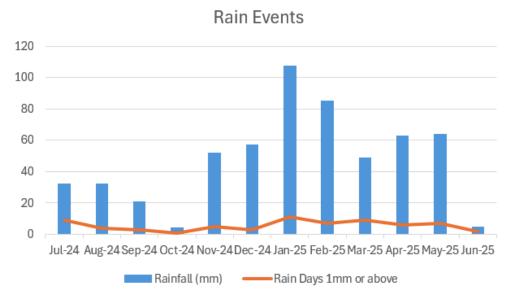
Under SSD7009, the following management plans have been prepared and approved by DPHI:

- · Noise Management Plan.
- Blast Management Pan.
- Air Quality and Greenhouse Gas Management Plan.
- Water Management Plan.
- Aboriginal and Cultural Heritage Management Plan.
- Historic Heritage Management Plan.
- Traffic Management Plan.
- · Biodiversity Management Plan.
- Environment Management Strategy.

The performance of the operation against the requirements of these plans, including any specific monitoring data or inspections required, are discussed in the following sections. In addition to these management plans, the operation also operates under a Water Management Plan which is discussed in Chapter 7 and a Rehabilitation Strategy which is discussed in Chapter 8. The above management plans were reviewed and accepted by DPHI on the 16th October and the 10th December 2024 following the Annual Review and Independent Audit and no changes were made.

6.2 Meteorological Monitoring

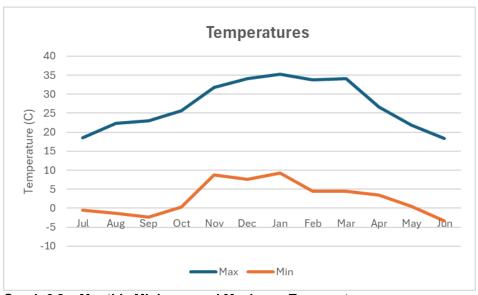
Condition B34 of the development consent and condition M5 of EPL 944 requires monitoring of meteorological conditions at the site. The weather station was installed on 7/12/22 to provide continuous meteorological monitoring data for the operation. Summaries of this data are provided in the following sections.


6.3 Rainfall

A total of 597.6mm of rainfall with 67 rain days was recorded at the site weather station during the reporting period. This was lower than the previous reporting period that recorded 1016.6mm with 96 rain days, and lower than the annual average of 698 with intense storm events. Rainfall was highest during January 2025 with 99.8mm and was the lowest in June 2025 with 9mm (Graph 6.1). The number of rain days ranged from 1-11 days per month.

Table 6.1 - Total Monthly Rainfall (mm) (2024/25)

Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Tot
33.6	33.6	23	12.4	53.4	62.2	99.8	86.4	49.8	64.8	69.6	9	597.6
	Number of Rain Days (≥1mm)											
9	4	3	1	5	3	11	7	9	6	7	2	67


Graph 6.1 - Monthly rainfall and number of rain days

6.2.2 Temperature

Temperatures were hottest in summer months with the highest maximum of 35.16°C in January 2025 and were coldest during the winter months with a lowest minimum of -3.36°C in June 2025 (Graph 6.2). The average maximum and minimum temperatures for the reporting period were 25.44°C and 2.9°C respectively.

Table 6.2 - Minimum and Maximum Monthly Temperatures (°C) (2024/25)

	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Max	18.54	22.26	23.04	25.65	31.84	34.14	35.16	33.7	34.13	26.68	21.87	18.42
Min	-0.44	-1.35	-2.32	0.27	8.83	7.61	9.28	4.49	4.53	3.51	0.46	-3.36

Graph 6.2 – Monthly Minimum and Maximum Temperatures

6.3 Air Quality

An Air Quality and Greenhouse Gas Management Plan (AQMP) was prepared for the site as required by the development consent which was approved by the then DPE in September 2022. The management plan was reviewed in July 2024 and no changes were made. The AQMP documents control measures and management initiatives, with the main objectives being to minimise the dust exposure to all persons working on site as well as to reduce the offsite dust impacts, remain in compliance with stack emission limits and mitigate dust nuisance. The AQMP provides a program detailing the assessment criteria, monitoring locations and procedures, reporting protocol and compliance checking procedures for air quality management at the Mine for the Continued Operations project.

A PM2.5 exceedance dated 17th December 2024, and PM2.5 and PM10 exceedance dated 10th April 2025 were reported to DPHI. It was determined that the location of the sampler can be improved to meet the Air Quality Management Plan requirement of being located on the boundary of the project, and an alternative location to meet the Air Quality Management Plan requirement of being at the boundary of the lease has been discussed with the EPA., Relocation is progressing, for details refer to Section 10.

On the 19th February 2025 a letter was sent to the EPA proposing a new location for the high-volume sampler station. The Environment Protection Authority (EPA) has reviewed the proposal, which includes analysis of meteorological, High Volume Air Sampler (HVAS) and deposited dust data.

A letter from the EPA dated 9th July 2025 recognised that there are challenges to the current location of the monitors and considered it appropriate to support the update to the monitoring locations. Management Plan updates and location change planning is underway.

6.3.1 Assessment Criteria

Marulan South Limestone Mine operates an air quality monitoring program as required by EPL Licence 944 and the AQMP. This program includes monitoring of ambient dust levels with deposited dust and particulates, as well as emissions of specific metals and both nitrogen and sulphur oxides from the kiln and hydrator stacks as detailed in Table 6.5. The NSW EPA air quality impact assessment criteria for dust emissions which are applicable to the Continued Operations Project are presented in Table 6.3 below.

Table 6.3 - NSW EPA Air Quality Impact Assessment Criteria (dust)

Pollutant	Averaging Period	Impact	Criterion
TSP	Annual	Total	^(a, c) 90 μg/cm ³
DM	Annual	Total	^(a, c) 25 µg/cm ³
PM ₁₀	24 hour	Total	^(b) 50 μg/cm ³
DM -	Annual	Total	^(a, c) 8 µg/cm ³
PM _{2.5}	24 hour	Total	^(b) 25 μg/cm ³
Deposited Dust	Annual	Incremental	2g/m ² /month
	Ailiuai	Total	4g/m ² /month

Notes:

- a Total impact (i.e. incremental increase in concentrations due to the development plus background concentrations due to all other sources).
- b Incremental impact (i.e. incremental increase in concentrations due to the development on its own).
- c Excludes extraordinary events such as bushfires, prescribed burning, dust storms, fire incidents or any other activity agreed by the Planning Secretary.

The NSW EPA air quality impact assessment criteria for NO₂ and SO₂ emissions which are applicable to the Continued Operations Project are presented in Table 6.4.

Table 6.4 - NSW EPA Air Quality Impact Assessment Criteria (NO₂ and SO₂)

Pollutant	Averaging Period	Criterion
NO.	1 hour	246 μg/cm ³
NO ₂	Annual	62 μg/cm ³
	10 minutes	712 µg/cm ³
SO ₂	1 hour	570 μg/cm ³
302	24 hour	228 µg/cm ³
	Annual	60 μg/cm ³

6.3.2 Kiln and Hydration Stack Monitoring

In accordance with EPA Licence 944 Condition L2, the actual load of an assessable pollutant discharged from the mine during the reporting period must not exceed the load limit specified for the assessable pollutant in table 6.5 below. Emissions of these pollutants are monitored annually, and the actual load of each pollutant is calculated in accordance with the relevant load calculation protocol provided by the EPA and reported in the EPA Annual Return. The current load limits are detailed in Table 6.5.

It was identified that the assessable pollutant load for Coarse Particulates for the 23/24 period exceeded the limit of 8500kg. On investigation the likely cause was found to be a process change to using finer material which reduced kiln energy usage by 20% per tonne. On 22 Nov 2024 the EPA received the application for the variation of the license, on the 20th December 2024 the EPA issued a notice to supply information to the licensee. On the 24th January 2025 the licensee provided all requested information. On the 4th February 2025 the EPA issued a draft variation to the license which Boral agreed to, with the official variation of licence issued 31 March 25.

Table 6.5 - Assessable Pollutant

Assessable Pollutant - Air (Kg)	Coarse Particulates	Fine Particulates	Lead	Mercury	Nitrogen Oxides	Sulphur Oxides
Load Limit	8,050	5,050	6.00	2.00	91,680	170
Load 22/23	7,395	3,638	0.769	1.462	73,089	30.806
Load 23/24	10,598	3,858	0.361	0.391	69,220	4.95
Load 24/25	9066	5984	0.343	0.371	68,573	1147.401

Kiln stack and hydrator stack monitoring results from the previous and the current reporting periods are presented in Table 6.6. All stack monitoring results were below the 100th percentile for both existing concentration limits and for Group 5 emission standards. The latest Annual Stack Monitoring was undertaken in October 2024.

Table 6.6 - Kiln Stack and Hydrator Stack Results

Pollutant	Kiln Stac	Hydrator Stack (12)	
Units: mg/m ³	Nitrogen Oxides	Solid Particles	Solid Particles
Sampling Method:	TM-11	TM-15	TM-15
Existing 100 th percentile concentration limit	2,500	250.0	250.0
Group 5 100 th percentile concentration limit	2,000	100	100
Result 2022/2023	300	43	<2
Result 2023/2024	300	64	1.5
Result 2024/2025	350	65	1.6

Notes: Monitored results on a Dry Basis, corrected to 101.325kPa and 0°C

6.3.3 Dust Deposition

Ambient dust levels are monitored at three depositional dust gauges. The dust gauges are referred to as 'Freddy's Hill' (EPL Point 18) located to the northwest of the mine, 'Store Paddock Hill' located to the northeast of the mine (EPL Point 16) and the Sub Station (EPL Point 17), which was monitored from January 2023 as required by the EPL variation. The dust deposition gauges are monitored by mine personnel with samples being delivered to NATA-accredited Boral Laboratories for dust analyses.

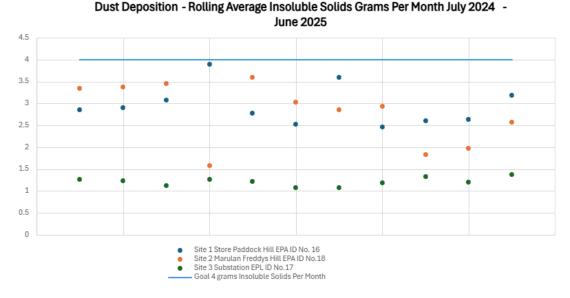
Results for dust deposition monitoring for the deposited dust monitoring sites are shown in Table 6.7 and Graph 6.3 below.

Table 6.7 – Deposited Dust (g/m²/month Insoluble Solids)

Site	Stores Paddock Hill (Point 16)	Sub Station (Point 17)	Freddy's Hill (Point 18)
Jul-2024	2.09	0.45	1.07
Aug-2024	4.02	0.88	1.65
Sep-2024	6.44	0.65	1.16
Oct-2024	3.04	3.26	2.43
Nov-2024	No result	No result	No result
Dec-2024	4.21	0.97	2.46
Jan-2025	0.54	0.19	0.77
Feb-2025	3.07	1.97	1.52
Mar-2025	2.87	1.98	3.64
Apr-2025	2.67	2.67	3.42
May-2025	0.98	1.04	2.91
Jun-2025	7.31	2.32	8.33
Annual average	3.39	1.49	2.67

The annual average for the Store Paddock Hill Site 16 was $3.39 \text{ g/m}^2/\text{month}$ (Table 6.7). Graph 6.3 shows that the annual rolling average stayed within the EPA Amenity Goal of 4 g/m²/month from July 2024 until June 2025. Whilst this gauge is located on Boral-owned land the data is useful in determining the relative sources of dust which contribute to the levels experienced at the nearest non-company owned residences further from the mine. The annual average during the 2024/25 reporting period was higher than that recorded in 2023/24, with an average of $2.99 \text{ g/m}^2/\text{month}$.

The deposited dust results from the Substation (Point 17) remained consistently below the EPA amenity criteria guidelines, fluctuating from 0.19 g/m²/month to 3.26 g/m²/month with an annual average of 1.49 g/m²/month during the reporting period (Graph 6.3, Table 6.7). This year's annual average was higher than last reporting period with an average of 1.48 g/m²/month.


The annual average insoluble solids at Freddy's Hill Site 18 was 2.67 g/m²/month (Table 6.7) which was lower than the average last year of 3.34 g/m²/month. The maximum was 8.33 g/m²/month in June 2025, overall the rolling average was kept within the EPA Amenity Goal of 4 g/m²/month. As with Point 16, the gauge is on Boral owned land. The distance to the nearest non-Boral owned residence is approximately 1.2km further to the northwest from this monitoring location.

Freddy's Hill and the Substation monitoring sites are located proximal to residential receivers C1, B3, B4 and B5. The predictions based on the EIS modelling of cumulative impacts for Stage 1 of the Project can be compared to the above results. The results for Freddy's Hill are in line with the EIS predictions, which modelled annual average deposited dust results ranging from 3.0-3.4 g/m²/month at the receivers in close proximity. The

Substation had a lower deposited dust annual average compared to the EIS predictions. The Store Paddock Hill is located to the North-East of the site, and there are no nearby receivers.

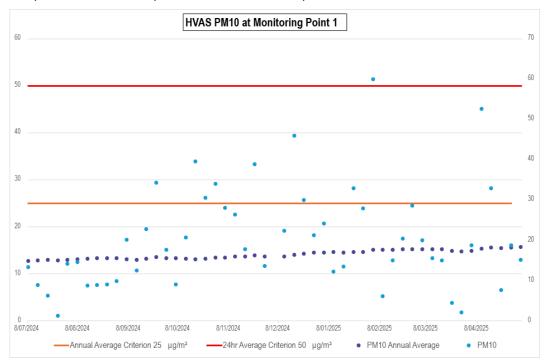
In November 2024 a change in courier resulted in the samples not being found by the lab as such, they were unavailable for analysis. Improvements to the Chain of Custody were made where confirmation of receipt of the samples from the lab were made to prevent future errors.

Graph 6.3 - Rolling Average Dust Deposition at EPL Points 16, 17 and 18

6.3.4 Particulate Matter

The development consent provides the air quality criteria for the site as per Table 6.8.

Table 6.8- Air Quality Criteria

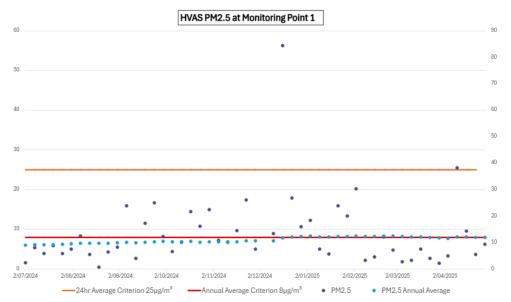

Pollutant	Averaging period	Criterion
Particulate matter < 10 µm (DM10)	Annual	25 μg/m3
Particulate matter < 10 µm (PM10)	24 hour	50 μg/m3
Dorticulate metter < 2.5 µm (DM2.5)	Annual	8 μg/m3
Particulate matter < 2.5 µm (PM2.5)	24 hour	25 µg/m3
Total suspended particulate (TSP) matter	Annual	90 μg/m3

PM10

The PM $_{10}$ high volume air sampler (HVAS) is referred to and located at the 'Nearest Resident' and identified as Monitoring Point 1 in the EPL. The monitoring results for the reporting period are shown in Graph 6.4. The EIS cumulative impacts model predicted a PM $_{10}$ annual average of 27.5 μ g/m³ at the Boral owned receiver B4 that is located at the HVAS site which is above the criteria of 25 μ g/m³. The actual annual average for the reporting period was much lower than the prediction, recorded at 14.57 μ g/m³ and well under the criteria. The minimum and maximum results for the 2024/2025 were 0.68 μ g/m³ and 18.25 μ g/m³ respectively. The PM $_{10}$ results are slightly higher than the previous reporting period which had an annual average of 14.9 μ g/m³. The trends visible below show that the PM $_{10}$ readings over the last two years have been lower during the cooler months of July, August and September.

An exceedance of Pm10 was recorded on the 10/4/ 2025 due to lawn mowing adjacent to the monitoring station during sample collection. The department was notified of the exceedance and that it was discarded and another sample was collected in place of the affected sample.

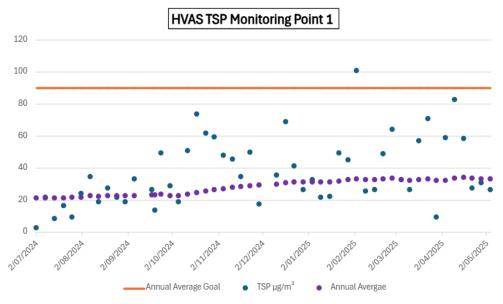
Graph 6.4 - PM₁₀ Monitoring Point 1 HVAS


PM2.5

The PM_{2.5} concentrations were monitored by the high-volume air sampler (HVAS) in conjunction with Peppertree Quarry from January 2023 as required by SSD7009 for the Continued Operations Project. The monitoring results for the reporting period and the previous period are shown in Graph 6.5. The maximum 24-hour average and annual average PM2.5 concentrations was 84.33, higher for this reporting period than the one prior. The 24-hour average PM2.5 exceeded the 24 –hour average assessment criteria on two occasions, An exceedance of PM2.5 on 17/12/2025 was recorded with a 24 hour reading of 84.3μg/m3. A report generated from Todoroski Air Sciences indicated that it was deemed likely that the PM2.5 monitor was likely ingesting particles larger than PM2.5 on occasion. Following the review, the frequency of erroneously high readings was reduced however these circumstances still occurred on occasion as no direct cause for the elevated readings was identified.

An exceedance of PM2.5 on 10/4/2025 was due to a lawn mower being used adjacent to the monitor during sampling. The department was notified of the exceedance and that it was discarded and another sample was collected to replace this.

The annual average was 11.54 μ g/m³, which is above the annual criterion of 8 μ g/m³. Since the HVAS is located in Boral owned land, this is not classed as a non-compliance for the site as the criteria needs to be met at the boundary. These results were higher than the previous reporting period which had an annual average of 8.8 μ g/m³. The EIS Stage 1 cumulative impacts model predicted an annual average PM_{2.5} concentration of 6.59 μ g/m³ at B4, which is lower than the 2024/2025 annual average. The maximum result for the last two reporting periods were both recorded during the month of October, this reporting period it was in December.



Graph 6.5 - PM_{2.5} Monitoring Point 1 HVAS

TSP

TSP was also monitored by the site's HVAS from January 2023. Results for the reporting period and the previous period are shown below in Graph 6.6. The annual average was $34.22~\mu g/m^3$ with minimum and maximum results of $2.15~\mu g/m^3$ and $101.19~\mu g/m^3$ respectively and is above the annual criterion of $90~\mu g/m^3$. The TSP during the reporting period was higher than the previous years annual average of $21.06~\mu g/m^3$. The Stage 1 predicted cumulative annual average in the EIS for TSP at B4 was $60.4~\mu g/m^3$ which is higher than the recorded average for the reporting period. During the 2022/23 and 2023/24 reporting periods, the most discernible trend is that the highest TSP was recorded in the month of March for each period, the 2024/25 reporting period had its highest reading in February. As observed with the particulate matter, the general trend is the lowest readings for TSP are during July and August.

Graph 6.6 - TSP Monitoring Point 1 HVAS

6.4 Biodiversity

A Biodiversity Management Plan (BMP) was prepared in accordance with condition B54 of the Continued Operations Project development consent which was approved in April 2022 and reviewed in December 2024. The BMP covers vegetation clearing, management of remnant vegetation, pest and weed management, establishes biodiversity performance indicators and rehabilitation completion criteria as well as ongoing biodiversity monitoring initiatives. The specific objectives of the BMP are to:

- comply with requirements including the development consent;
- meet the obligations and commitments identified in the EIS;
- · ensure compliance with relevant environmental legislation;
- outline management actions and controls to protect and enhance biodiversity values;
- ensure appropriate and representative monitoring is conducted for verification that the BMP is effectively implemented and meeting its objectives; and
- ensure appropriate contingencies and resources for mitigating adverse impacts to native vegetation areas.

The BMP has designed the following vegetation clearing protocol which is implemented prior to and during the clearing of vegetation on site:

- ground dwelling fauna will be identified and relocated prior to clearing;
- suitably qualified personnel will be engaged to supervise felling of hollow bearing trees;
- displaced fauna will be caught and relocated to pre-designated areas by qualified wildlife handlers; and
- the NSW Wildlife Information and rescue Service will be requested to handle and care for wildlife encountered during operations.

6.4.1 Clearing of Vegetation

A total of 10.3 hectares were cleared using the above protocol in the reporting period under guidance and supervision of an ecologist. The location of this work is summarised under land preparation (Section 4.10; Plate 1) and is detailed below:

- Area 1 located on the Western Overburden Emplacement was surveyed on the 8th April 2025. One brushtail possum was located within a tree hollow. The possum was unharmed and remained inside the safety of the felled hollow tree until nightfall.
- Area 2 includes the area to the south of the TRN compound. A pre-clearance survey was undertaken for Marulan South Limestone Mine on the 21st February 2025 by an Ecologist from International Environmental Consultants Pty Limited. The survey included the identification of habitat features including hollow bearing trees and burrows. No habitat trees were identified within the TRN extension. This area can be cleared at any time and supervision of an ecologist is not required.
- Area 3 is located to the south of the loadout area. A pre-clearance survey was undertaken for Marulan South Limestone Mine on the 23rd August 2024 by an Ecologist from International Environmental Consultants Pty Limited. These areas were surveyed for nocturnal fauna activity using spotlighting on the 2/08/24. The survey commenced at approximately 6:30pm. Each habitat tree within the area was examined thoroughly under the spotlight for several minutes by scanning each branch with the torch light. Four brushtail possums were identified in the area during the night survey. Prior to the day of the supervised clearing, the non-habitat trees within the area were cleared to encourage any resident fauna to vacate. On the day of the supervised clearing, each habitat tree was gently tapped by the excavator three times, while the ecologist on site scanned for any fauna movement within the tree hollows. Following the third tap, if no fauna was visible, the tree would be felled. Once the tree was safely on the

ground, the ecologist would thoroughly inspect the tree hollows for any signs of life or evidence of nests. A total of 33 habitat trees were felled on the 3rd and 4th September 2024.

- Area 4 is located south of BMD dam, A pre-clearance survey was undertaken for Marulan South Limestone Mine in May 2024 by an Ecologist from International Environmental Consultants Pty Limited. The remaining area surveyed on the 4th September 2024 was a small strip of land adjacent to Main Dump Road to be cleared for the road realignment. The terrain was relatively steep, with a steep decline adjacent to Main Dump Road and a gully situated in the centre of the area. No further habitat trees were identified in during the ecologist survey on the 4th September 2024. The trees located in this strip were predominantly juvenile saplings. They were not identified as habitat features as they would not be old enough to contain hollows or large enough to provide shelter for arboreal fauna species, and were cleared within 21 days post the survey on the 4th September 2024.
- Area 5 is a new haul road named Gully Dump Rd. The original day and night survey of the vegetation in the white clay area (west of the old kiln road), main dump road realignment area and the new haul road was undertaken on the 28th February 2024, and the night survey on the 5th of March 2024. The area was first cleared on the 20th and 25th of March 2024, and several further surveys and clearings have taken place to stay in line with progressive clearing to prevent exposed ground that is not being used for mining or emplacing. The last day and night survey for Gully Dump Rd was conducted on the 21st of February 2025 and felling of the last habitat tree on the 13th of February 2025. The road is now finalised and no further clearing required in this area. No animal activity was noted during the felling of the habitat tree as supervised by an Ecologist from International Environmental Consultants Pty Limited.
- Area 6 is a portion of the mine known as "White Clay". The original day and night survey of the vegetation in the white clay area (west of the old kiln road), main dump road realignment area and the new haul road was undertaken on the 28th February 2024, and the night survey on the 5th of March 2024 in the higher elevation of the area. and several further surveys and clearings have taken place to stay in line with progressive clearing to prevent exposed ground that is not being used for mining or emplacing. A habitat survey and day/night survey was conducted on the 19th of June and re-assessment on the 19th August 2025 which covered further area at a lower elevation to prepare for clearing. Four habitat trees and a wombat burrow were identified and marked. On the 19th August 2024 kookaburras were seen at one particular habitat tree and it is noted that they may be searching for suitable nest locations. No animal activity was observed in the night survey.

A record of all surveys and clearing are kept by the mine in progress reports produced by the ecologist.

6.4.2 Biodiversity Offsets

A Biodiversity Development Assessment Report was prepared By Niche to support the EIS for SSDA7009. This identified a number of ecosystems and species that would be impacted by the project and generated the number of credits of each that would be required to offset these impacts. Boral will be offsetting the impacts using two properties, which are established as Stewardship Sites under the BAM to provide in-perpetuity protection and management of biodiversity values. Short-, medium- and long-term measures have been developed as part of the Biodiversity Stewardship Agreements (BSAs) to manage the offset areas. The majority of the required credits have been retired through the Boral owned Stewardship Site Coolumburra' which satisfies all the ecosystem credit requirements (except for Box Gum Woodland) and the majority of the species credit requirements for the Project. The second payment from the Biodiversity Conservation Trust was received for the site during the reporting period. The site is now under active management and the BSA details specific management measures and monitoring requirements which have commenced. Year 2 of annual reporting to BCT was submitted in March 2025.

Boral has negotiated security of credits to satisfy the full State and Commonwealth offset liabilities for Box Gum Woodland via a privately owned existing Biodiversity Stewardship Agreement. The residual species credit requirement have be met by payment into the Biodiversity Conservation Fund and through the purchase of credits from other approved third parties.

6.5 Vibration and Air blasting

A Blast Management Plan was prepared in March 2022 under Condition B23 of the Continued Operations Project development consent and revised in December 2023. In accordance with Condition L5 of EPL 944, mining operations are required to employ practices to limit the effects from blasting as follows:

Ground Vibration

- Peak particle velocity not to exceed 10mm/sec
- Peak particle velocity not to exceed 5mm/sec in more than 5% of the total number of blasts over a financial year

Blast Overpressure

- Blast overpressure noise level not to exceed 120dB(lin) for any blast
- Blast overpressure noise level not to exceed 115dB(linear) in more than 5% of the total number of blasts over financial year

The above criteria also aligns with the operational blast emissions criteria (Continued Operations Project Development Consent Condition B11). The following protocols are currently followed in regard to blasting:

- Blasting is conducted between the hours of 9am and 5pm Monday to Friday with no blasting occurring
 on public holidays. If blasting is delayed, the shot will be left overnight and blasted the next day within
 the allowable hours.
- Only one blast per day is allowed in accordance with CoC B14.
- Prior to production blasting, Boral will contact affected landowners or occupiers within two kilometres of the pit seeking expressions of interest in being notified of future blasts.
- Marulan South Limestone Mine operations shall be in daily contact with the adjacent Boral Peppertree Quarry operations to reduce the possibility of blasting concurrently.
- As per the BMP, individual blast design records shall be maintained to assist in the design and optimisation of future events, planning and control of blasting emissions and to provide a traceable system of documentation in case of accident or complaint.
- The mine shall maintain a record of the Blast Design and monitoring Airblast Overpressure and Ground Vibration for each blast event in a suitable format guided by the requirements of AS 2187.2-1993.
- Prior to blasting, warning sirens continue to be activated in accordance with safe blasting procedures.

Predictions were made in the EIS based on a review of the last three years of blasting data. Table 6.9 below shows calculated overpressure and vibration levels at the B5 receiver due to blasting from the mine. The B5 receiver is located to the north-west of the operation at "Turkey Farm", 950m from the closest blast. The predictions below are assuming a Maximum Instantaneous Change (MIC) from the blast of 1,760 (8x220) kg.

Table 6.9 Predicted Overpressure and Vibration Levels for Blasting Stage 1 and 2 at B5

Stage	Measurement	Result
1 (Approximately 5 years; commanding 2010)	Peak Overpressure dB(Lin)	117
1 (Approximately 5 years; commencing 2019)	PPV mm/sec	2.34
2 (Approximately 7.9 years following Stage 1)	Peak Overpressure dB(Lin)	113
2 (Approximately 7-8 years following Stage 1)	PPV mm/sec	1.34

The predicted blast vibration and overpressure levels are below the building damage criteria of 10mm/s and 133 dB(Lin) respectively and was also below the human annoyance and discomfort criteria of 2mm/s and 115 dB(Lin) at all dwellings of sensitive receivers.

Table 6.10 details the Airblast Overpressure and the Ground Vibration level monitoring results for the total 124 blasts undertaken at Marulan South during the reporting period. These blasts were monitored at the Boral owned residence on Marulan South Road to the northwest of the mine and at the Sub Station since January 2023 (located west to northwest of the pit on Marulan South Road). There were no exceedances of the overpressure or vibration criteria at Marulan South Road during the 2024/25 reporting period. On average blasting overpressure and vibration results at both Marulan South Road and the Substation were below the predictions. All blasting was undertaken within the approved time between 9:00am to 5:00pm Monday to Friday.

Between the 26th and 30th of September, 2024 the overpressure microphone at the Sub Station location was damaged by animals. A temporary unit was set up on the 8th October 2024 where readings were taken until the monitor was repaired and re-installed. This event was recorded in the POELA report for October.

On the 18th June, 2025 a new vibration monitor was installed at the Sub Station Location. The new monitor follows the recommendations for the specifications listed in the Blast Management Plan.

Table 6.10- Blast Monitoring Results

		Substa	tion	Marulan South Road		
Date	Time	Overpressure dB(Lin Peak)	Vibration (mm/s)	Overpressure dB(Lin Peak)	Vibration (mm/s)	
01-Jul-24	3:32pm	102.5	0.26	no trigger	no trigger	
04-Jul-24	1:07pm	100	0.23	97.8	0.25	
08-Jul-24	2:18pm	82.5	0.08	no trigger	no trigger	
11-Jul-24	12.34pm	86.1	0.08	94.4	0.23	
15-Jul-24	3.47pm	107.1	0.2	100.9	0.32	
18-Jul-24	1:03pm	98.8	0.06	no trigger	no trigger	
22-Jul-24	12.30pm	97.3	0.06	104.6	0.19	
25-Jul-24	12:42pm	90.5	0.15	no trigger	no trigger	
29-Jul-24	1.16pm	1.16pm	99.4	0.18	98.4	
01-Aug-24	12.32pm	99.4	0.16	No Trigger	No Trigger	
05-Aug-24	1.09pm	86.1	0.6	92.4	0.26	
06-Aug-24	1.09pm	86.1	0.6	92.4	0.26	
07-Aug-24	3.25pm	82.5	0.6	101.3	0.28	
08-Aug-24	3.35pm	88.5	0.08	No Trigger	No Trigger	
12-Aug-24	1:50pm	1:50pm	82.5	0.06	No Trigger	
14-Aug-24	3:39pm	98.8	0.23	100.5	0.13	
15-Aug-24	12:28pm	102.1	0.19	100.1	0.21	
19-Aug-24	1:36pm	82.5	0.06	No Trigger	No Trigger	
22-Aug-24	3.30pm	97.3	0.08	No Trigger	No Trigger	
26-Aug-24	1:40pm	103	0.06	No Trigger	No Trigger	

28-Aug-24	1.25PM	98.1	0.28	103.5	0.24
02-Sep-24	3:35pm	118.7	0.09	117.9	0.17
04-Sep-24	3.40pm	94.4	0.06	95.6	0.14
05-Sep-24	12:33pm	101.6	0.06	No Trigger	No Trigger
09-Sep-24	1.01pm	96.5	0.08	105.3	0.26
11-Sep-24	3:30pm	82.5	0.06	No Trigger	No Trigger
16-Sep-24	2:39pm	93.4	0.08	102.9	0.25
19-Sep-24	3:33pm	98.8	0.06	106.8	0.23
23-Sep-24	2:27pm	104.8	0.23	100.8	0.17
26-Sep-24	2:32pm	104.1	0.18	112.1	0.19
30-Sep-24	3:32pm	-	-	No Trigger	No Trigger
02-Oct-24	3:33pm	-	-	No Trigger	No Trigger
03-Oct-24	2:31pm	-	-	No Trigger	No Trigger
09-Oct-24	3:36pm	No Trigger	No Trigger	96.4	0.19
10-Oct-24	1:21pm	No Trigger	No Trigger	98.1	0.2
14-Oct-24	1:04pm	No Trigger	No Trigger	97.4	0.36
17-Oct-24	3:39pm	No Trigger	No Trigger	98.4	0.29
21-Oct-24	3:41pm	No Trigger	No Trigger	No Trigger	No Trigger
24-Oct-24	3:39pm	99.7	0.28	101.9	0.2
28-Oct-24	2:38pm	106.5	0.14	No Trigger	No Trigger
29-Oct-24	2:38pm	106.5	0.14	No Trigger	No Trigger
30-Oct-24	12:44pm	97.4	0.1	No Trigger	No Trigger
31-Oct-24	1:31pm	103.1	0.08	96.9	0.18
4-Nov-24	12:48pm	106.7	0.18	93.8	0.21
5-Nov-24	12:54pm	105.4	0.09	No Trigger	No Trigger
7-Nov-24	1:05pm	98.8	0.14	No Trigger	No Trigger
11-Nov-24	2:17pm	97.4	0.21	94.6	0.13
13-Nov-24	12:38pm	102.3	0.12	No Trigger	No Trigger
14-Nov-24	3:30pm	99.9	0.17	95.5	0.17
18-Nov-24	1:39pm	109.3	0.19	No Trigger	No Trigger
20-Nov-24	1:37pm	96.7	0.1	No Trigger	No Trigger
21-Nov-24	1:37pm	103.1	0.17	No Trigger	No Trigger
25-Nov-24	3:31pm	97.4	0.18	93.6	0.24
28-Nov-24	1:35pm	81.9	0.09	92.4	0.18
1-Dec-24	3:00pm	103.5	0.1	105	0.31
2-Dec-24	3:00pm	103.5	0.1	105	0.31
3-Dec-24	3:00pm	103.5	0.1	105	0.31
5-Dec-24	1:35pm	89.7	0.1	No Trigger	No Trigger
9-Dec-24	3:36pm	93.9	0.1	No Trigger	No Trigger

					T
10-Dec-24	1:07pm	94.9	0.17	No Trigger	No Trigger
12-Dec-24	1:35pm	85.4	0.1	No Trigger	No Trigger
13-Dec-24	1:35pm	85.4	0.1	No Trigger	No Trigger
17-Dec-24	1:34pm	106.2	0.1	No Trigger	No Trigger
18-Dec-24	2:09pm	93.9	0.8	No Trigger	No Trigger
19-Dec-24	3:35pm	95.1	0.1	No Trigger	No Trigger
8-Jan-25	1:38pm	81.9	0.7	94.9	0.23
9-Jan-25	1:05pm	92.8	0.16	No Trigger	No Trigger
13-Jan-25	1:37pm	101.9	0.14	No Trigger	No Trigger
15-Jan-25	3:38pm	97.4	0.14	No Trigger	No Trigger
20-Jan-25	3:32pm	98.8	0.15	No Trigger	No Trigger
22-Jan-25	11:46pm	96.7	0.12	No Trigger	No Trigger
23-Jan-25	1:09pm	107.2	0.11	No Trigger	No Trigger
28-Jan-25	3:53pm	91.4	0.13	No Trigger	No Trigger
30-Jan-25	12:43pm	94.9	0.9	No Trigger	No Trigger
2-Feb-25	2:30pm	102.3	0.18	91.4	0.21
3-Feb-25	2:30pm	102.3	0.18	91.4	0.21
4-Feb-25	2:30pm	102.3	0.18	91.4	0.21
5-Feb-25	1:32pm	105.1	0.11	No Trigger	No Trigger
11-Feb-25	3:26pm	96.7	0.1	No Trigger	No Trigger
12-Feb-25	1:35pm	87.9	0.9	No Trigger	No Trigger
17-Feb-25	3:36pm	81.8	0.9	94.3	0.17
20-Feb-25	1.34pm	91.4	0.8	96.1	0.27
24-Feb-25	3.52pm	97.4	0.9	No Trigger	No Trigger
25-Feb-25	3.52pm	97.4	0.9	No Trigger	No Trigger
27-Feb-25	3.52pm	92.8	0.12	No Trigger	No Trigger
3-Mar-25	3.37pm	99.4	0.9	95.9	0.24
6-Mar-25	1.39pm	101.4	0.1	94.1	0.18
10-Mar-25	3.39pm	81.9	0.1	No Trigger	No Trigger
12-Mar-25	1.20pm	85.4	0.09	93.8	0.21
13-Mar-25	11.32am	87.9	0.1	No Trigger	No Trigger
17-Mar-25	1.01pm	84.5	0.9	No Trigger	No Trigger
20-Mar-25	3.35pm	81.9	0.01	No Trigger	No Trigger
24-Mar-25	3.40pm	94.9	0.1	No Trigger	No Trigger
27-Mar-25	2:04pm	104.5	0.09	No Trigger	No Trigger
31-Mar-25	3:30pm	85.4	0.09	96.3	0.15
2-Apr-25	1.27pm	91.4	0.15	No Trigger	No Trigger
3-Apr-25	3.37pm	85.4	0.1	94.2	0.16
7-Apr-25	3.40pm	106.5	0.15	No Trigger	No Trigger

9-Apr-25	1:46pm	102.3	0.17	No Trigger	No Trigger
10-Apr-25	1:46pm	102.3	0.17	No Trigger	No Trigger
13-Apr-25	1:40pm	106	0.15	93.5	0.18
14-Apr-25	1:40pm	106	0.15	93.5	0.18
16-Apr-25	3.38pm	102.7	0.15	94.8	0.2
17-Apr-25	3.38pm	102.7	0.15	94.8	0.2
23-Apr-25	2:08pm	108.9	0.12	No Trigger	No Trigger
24-Apr-25	2:08pm	108.9	0.12	No Trigger	No Trigger
29-Apr-25	3.32pm	85.4	0.13	No Trigger	No Trigger
30-Apr-25	1.05pm	85.4	0.11	No Trigger	No Trigger
1-May-25	1:10pm	106	0.15	No Trigger	No Trigger
5-May-25	4:04pm	94.4	0.24	94.4	0.35
8-May-25	3:31pm	103.1	0.11	No Trigger	No Trigger
12-May-25	2:19pm	105.1	0.18	No Trigger	No Trigger
15-May-25	3:31pm	85.4	0.08	No Trigger	No Trigger
19-May-25	1:33pm	97.4	0.07	No Trigger	No Trigger
22-May-25	3:33pm	94.9	0.24	No Trigger	No Trigger
26-May-25	1:17pm	81.9	0.19	No Trigger	No Trigger
28-May-25	3:31pm	102.7	0.08	No Trigger	No Trigger
2-Jun-25	1:32pm	98.8	0.9	No Trigger	No Trigger
5-Jun-25	4:12pm	81.9	0.06	No Trigger	No Trigger
12-Jun-25	1:10pm	91.4	0.06	No Trigger	No Trigger
16-Jun-25	1:03pm	91.4	0.15	No Trigger	No Trigger
19-Jun-25	4:30pm	101.9	0.18	No Trigger	No Trigger
23-Jun-25	3:18pm	94.4	0.7	No Trigger	No Trigger
26-Jun-25	1:16pm	98.1	0.19	No Trigger	No Trigger

6.6 Operational Noise

In March 2022, the Noise Management Plan was approved and was reviewed in November 2023 with no changes made. This Management Plan details the noise criteria defined by Section B1 of the Continued Operations Project development consent, as provided in Table 6.11. The Noise Management Plan established a hierarchical approach to ensure that operations comply with the relevant conditions of the consent:

- Mine operations will be managed to meet the criteria presented in Table 6.11 and EPL noise criteria, through operational practices and the implementation of reasonable and feasible noise controls.
- Where noise levels exceed noise criteria or verified noise complaints are received, ensure all noise controls are in place or determine the need to reduce operations and point of source noise.
- Liaise with the local community regarding scheduled works which are predicted to have increased noise impacts.

Table 6.11- Operational Noise Criteria

Dessivers	Project Noise Trigger Level (dBA)			
Receivers	Day	Evening	Night	
R9	40	36	36	
All other residents	40	35	35	

Note: Daytime 7:00am-7:00pm; Evening 7:00pm-10:00pm; Night 10:00pm-7:00am

Noise levels for daytime, evening and night resulting from the continuation of mining operations for each stage of the 30 year mine life were predicted in the EIS. Noise levels from two worst-case operating scenarios comply with the noise trigger levels at all stages over all time periods. The predicted noise levels at Receiver 9 (R9) are shown in Table 6.12 below.

Table 6.12 Predicted Noise Levels at R9 (L_{Aeq, 15min} dBA)

Scenario	Stage	Daytime	Evening	Night	Complies
	1 Start	30	31	31	Yes
Overburden Removal,	1 End	27	28	28	Yes
Overburden Emplacement,	2	32	31	31	Yes
Limestone Removal ('4+2')	3	29	30	30	Yes
	4	26	27	27	Yes
Overburden Removal and Emplacement ('6')	1 Start	33	34	34	Yes
	1 End	36	36	36	Yes
	2	34	35	35	Yes
	3	32	33	33	Yes
	4	26	27	27	Yes

Current mitigation measures will continue to be followed to avoid the likelihood of exceedances in the future. This entails a quarterly noise monitoring program based on attended noise monitoring. To supplement quarterly attended noise monitoring, a continuous unattended noise monitoring station has been established between the western overburden emplacement and the nearest potentially affected receiver location identified as R9.

Attended noise monitoring was undertaken quarterly during the reporting period by Muller Acoustic Consulting Pty Ltd. Attended noise monitoring was conducted at five noise monitoring locations for 15-minute periods for three attended events during day, evening, and night periods. Where possible, throughout each measurement the operator quantified the contribution of each significant noise source. Extraneous noise sources such as wind gusts, insects, birds, livestock, dog barking, aircraft and residential noise were audible throughout the attended measurements.

The site noise level contribution was below the operational noise criteria in Table 6.11 during monitoring events in October and December 2024, and January and April 2025 at all receptor locations during all three time periods.

The mine was generally just audible at R8 and R9 throughout day, evening and night measurements. The mine was audible at R6 during day and night measurements only, and during day measurements only at R12. The mine was inaudible during all measurements conducted at location R17. Mine related noise included general

processing noise, heavy vehicle movements, machinery operations and reverse alarms audible at R8 and R9. At R6 the mine related noise included site hum and machinery operation, while only heavy vehicle movements were audible at R12.

Noise levels recorded from the mine were in line with the Scenario '4+2' predicted noise levels and below the Scenario '6' predictions outlined in Table 6.11 above. The contributions at all monitoring locations satisfied the consent conditions at their respective assessed receivers.

6.7 Aboriginal Heritage

The Aboriginal Cultural Heritage Management Plan (ACHMP) was approved in March 2022 in accordance with Condition B60 of the Continued Operations Project development consent. The management plan was reviewed in October 2023, and no changes were made. The plan provides guidance on:

- management procedures for historic heritage values within, and adjacent to, the mine during preconstruction and construction phases;
- protocols and procedures for new cultural finds and human remains;
- protocols for undertaking activities in areas that have not been previously assessed;
- administrative requirements, including post-project management of historical finds and recovered material, ongoing compliance, regular review and update of the HHMP to ensure its functionality is maintained through the mine life; and
- includes a strategy for the care, control and storage of heritage relics salvaged from the site.

Five archaeological sites were identified for salvage excavation during the Aboriginal Cultural Heritage Assessment (ACHMP) for SSDA7009 (EMM 2019). These sites are within two localities: adjacent to Marulan Creek (MSL 046; MSL 047; MSL 057 and MSL 045) and on a flat spur at the main Project site MSL 055. The ACHMP only addresses the sites adjacent to Marulan Creek and excludes MSL 055 because that site is now within the Peppertree Quarry MOD 5 footprint and subject to the salvage measures detailed in the PTQ AHMP (Boral & EMM 2021).

Salvage work was carried out between 19 – 22 June 2023 by EMM Archaeologists accompanied by representatives from Ngunawal Heritage Aboriginal Corporation, Thunderstone Aboriginal Cultural and Land Management Services and Pejar Local Aboriginal Lands Council.

Each of the 38 Aboriginal sites with management requirements within the southern section of the project area were visited and were managed according to the guidelines set out within the ACHMP. A total of 72 artefacts were collected from 16 Aboriginal sites. One new Aboriginal site (MSL2301) was recorded during the work. MSL2301 is characterised as an open site artefact scatter comprising a total of 14 stone artefacts eroding from the southern bank of a dam. Salvage works were undertaken and completed on the 11th June 2025 with Management Plan updates underway to be submitted to DPHI.

Salvage of the sites adjacent to Marulan Creek will be undertaken prior to construction of the Marulan Creek Dam and reported in a future Annual Review once undertaken as per the protocol in the ACHMP.

6.8 Combustion Risk and Management

The storage of coal used as a supplementary fuel for the calcination of limestone in the lime kilns is the only activity previously identified on site with the potential for spontaneous combustion. The primary use of natural gas as kiln fuel has reduced the potential risk of spontaneous combustion.

The risk of spontaneous combustion is minimized by CO monitoring, alarming and a triggered, stored CO₂ discharge system sized to extinguish combustion. This system is serviced by Wormald, a division of Tyco Australia Pty Ltd. These services are carried on a planned preventative maintenance schedule held within BCL's MAXIMO maintenance management system.

6.9 Bushfire

Bushfire response and management is an ongoing site program both from a safety and environmental aspect. The Marulan South Operations Bushfire Management Plan seeks to maintain and monitor bushfire prone areas and equipment; minimise the risk of bushfires spreading from the project site; and establish responses and controls to fires.

An annual bushfire risk assessment is undertaken at the commencement of each bushfire season in October. The bushfire management plan addresses associated risks and lays out requirements for very high-risk days relating to things such as hot work, vehicles driving on vegetation etc. Boral is aware of the risks of bushfire and has implemented the following safeguards:

- 1. Firefighting equipment is always on hand during hot work activities;
- 2. Safe Work Method Statements are required for all activities on site, and the risks of bushfire are considered;
- 3. Fire extinguishers are installed in mobile machinery;
- 4. Cleared asset protection zones have been created around all buildings and infrastructure;
- 5. Water storages on site are available for use in firefighting as necessary; and
- 6. One of the two water carts on site must remain full at all times to be available on site for emergencies.

The Bushfire Management Plan was reviewed in February 2020 following the Morton Bushfires. Specific measures for evacuation were updated to include refuge in the pit as a secondary option to evacuation via Marulan South Road as it was demonstrated that the fire threat could be more widespread than previously mitigated against. Three levels of threat were identified based on RFS categorisation and associated response measures incorporated into the management plan.

During the reporting period, bushfire risk has been low, however improved foliage growth following favourable conditions and with reduced rainfall expected in future months, could increases in bushfire risks in the next period.

The Bushfire Management Plan was last reviewed in November 2024 with no changes. During this reporting period a high visibility sign was installed to alert all persons entering Peppertree quarry and Limestone mine, highlighting the current status of bushfire risk.

6.10 Geotechnical Stability

Open pit and waste emplacement slope stability is an aspect of limestone mining activities with the potential for both safety and environmental impacts particularly as the depth of mining increases. The use of improved blasting techniques, the development of procedures for managing slope stability issues and training instruction for site inspection continue to be implemented.

Geotechnical investigations were undertaken on 6th August 2024 by Pell Sullivan Meynink (PSM) for the preparation of the annual geotechnical report for the Marulan Limestone Mine. The assessment predominantly focused on inspection of pit exposures and proposed progression of the mine, inspection of the Barbers Creek Emplacement following evidence of failure in November 2022, and discussion regarding Geotechnical Awareness training.

The inspections covered the current exposures to provide an overview of the potential long-term performance of the pit walls in limestone and which will need to remain to allow production to continue under the Continued Operations Project. Known areas of instability were also covered in the August 2024 assessment. The assessment made 2 recommendations as follows:

Application of In Sar for the Barbers Creek Emplacement.

2. Interim designs be developed for east and west wall development. In light of increased understanding through development of exposures there is opportunity to upside in the design parameters of the eastern sediments and also the norther part of the western sediments.

Boral established that In Sar monitoring will not bring any additional benefits to the on going monitoring and and remediation of the Barbers Creek Emplacement and it will continue in the next reporting period.

Intermediate designs have been issued of the yearly and 3 year mine plan based on the design criteria reviewed by PSM.

6.11 Hydrocarbon Contamination

Hydrocarbons used on site include fuels (diesel and petrol), oils and greases. Previous to this reporting period, the 95,000L double lined diesel tank was removed from the diesel storage facility in North Pit and relocated to a temporary refuelling station to the south of Ring Road following refurbishment. The one 40,000L tank and one 20,000 tank that were being utilised in interim were removed during the previous reporting period. The area is fully bunded where any potential spills can be adequately contained and managed in accordance with emergency response procedures and classified and disposed of in accordance with relevant waste legislation.

The potential for hydrocarbon contamination resulting from leakages and spills continues to be minimised by the implementation of documented hydrocarbon spill procedures and the use of biological oil spill kits located across site operational areas. These spill kits are maintained and serviced by approved contractor services every 2 months.

Oils are stored within three bunded bulk storage tanks with a maximum of 10,000L each tank used for hydraulic oil, engine oil, and torque fluids. These three tanks feed into smaller containers in a bunded area of the machine shop where small quantities of greases are required for maintenance of plant and equipment. Storage, handling, containment and disposal of workshop hydrocarbons is managed in accordance with AS 1940:2004. A self-contained oil and water separator controls the runoff of the workshop floor which is monitored, maintained and cleaned when required. Two self-bunded containers were purchased and installed on site this reporting period, one at the store and one at the machine shop to contain and store hydrocarbons.

Review of procedures, equipment and training for hydrocarbon management and spill response is an ongoing commitment. Testing of the management system and responses is undertaken generally every 12 months.

6.12 Public safety

A security plan has been fully operational since 2006 and was upgraded with the new access requirements between Peppertree and the mine. This plan is reviewed annually.

Features of the security plan and system include the following:

- A 3 metre-tall automated sliding security gate at the exit of the Sand Plant Road.
- A 3-metre-tall sliding gate located at the Main office, connected to chain mesh fencing for appropriate scrutiny of all site visitors.
- A pedestrian gate near the visitor's car park for office access to ensure visitor sign in.
- Two swing gates located on the Lime Kiln Road prior to the main weighbridge and associated chain mesh fencing.
- Chain mesh fencing of the mine site perimeter and around the main entry areas to limit points of entry and exit to the control points (gates).
- Signage for both the new and existing mine perimeter fencing.

All visitors report to the "off lease" Site Administration and Training Main Office to sign in prior to gaining entry to Mining Lease 1857.

Review and upgrade of the Site's Induction system for visitors, contractors and employees is an on-going commitment as part of the Site Safety Management System.

7. WATER MANAGEMENT

An updated site Water Management Plan (WMP) was completed in August 2022 and reviewed in August 2024 with no changes made, and accepted by DPHI on the 13 Sep 2024. The updated WMP covers the Stage 1 and 2 expansions of the mine but will need to be updated again prior to the commencement of Stage 3.

The WMP will be updated during the coming reporting period to incorporate management strategies with the closed catchment dam. See Section 10 for details.

7.1 Erosion and Sediment Management

Current methods of erosion control including the use of clean water diversions to limit run off over disturbed areas, contour banks on the exposed batters of waste emplacements, rock and concrete lined drainage structures, sediment ponds and the re-establishment of vegetation continue to be effective means of reducing erosion on exposed areas. Periodic inspections on drainage are performed to ensure water runs to either the North pit or South pit voids.

Use of a daily water balance model within the surface water assessment concluded that the water management system is extremely robust and is secure for the mining operations. Overflow from storage dams and runoff can be estimated at 580ML per annum, which is expected to evaporate or seep into groundwater. Clean water and "mine supply water" storages are detailed in Table 7.2 - Stored Water Volumes.

The erosion and sediment control system is managed through control plans which have been progressively updated to meet changes as the project develops. The WMP continues this process in order to meet the obligations and commitments identified in the SSD approval. The existing surface water management system provides measures to divert runoff from the overburden emplacements to sediment basins designed in accordance with current guidelines. Rehabilitated landforms are designed to shed water without causing excessive erosion and downstream pollution. During rehabilitation, topsoil is prioritised for the high-risk erosion areas on the overburden emplacement slopes, and alternative media for vegetation growth is used on lower slopes and flat areas.

Maintenance of dams and drainage lines continued where possible following high rainfall events which occurred during the reporting period.

7.1.1 Sewerage Waste Management

No changes to sewerage waste management have occurred during the reporting period. The Marulan South Limestone Mine continues to operate five sewerage treatment facilities:

- Main envirocycle unit that receives effluent from main offices, laboratory, bathrooms, store and conference room. This aerated water treatment system was refitted with new pumps and upgraded during the reporting period to maintain compliance with Council requirements.
- Two Lime plant envirocycle units servicing the kiln control room, hydration, dispatch and workshop areas.
- Two Septic tanks, one located at the "machine shop"/primary crusher the other adjacent to the "Fettlers' shed".

Another septic system services the former "Club" facility, north of the main office and located "off-lease".

To ensure no overflow occurs from the "machine shop"/primary crusher septic tank, this unit continues to be inspected and pumped out weekly by an accredited waste disposal contractor. The "Fettler's shed" and "Club" units are adequately serviced by adsorption trenches.

The septic units listed above are inspected quarterly to ensure compliance with Council's regulations.

7.2 Surface Water Management

7.2.1 Pollution Control Strategies

The Marulan South Limestone Mine continues to operate under the Environment Protection Licence (EPL) No. 944 and is required to prevent pollution of waters. The existing water management system involving three major catchments, (northern, southern and western emplacement areas) and associated infrastructure continued to operate during the 2023/2024 reporting period. The performance measures for the pollution control system are as follows:

- Maintain separation between clean, dirty (i.e. sediment laden) and mine water management systems.
- Minimise the use of clean and potable water on the site.
- Maximise water recycling, reuse and sharing opportunities.
- Minimise the use of make-up water from external sources.
- Design, install, operate and maintain water management systems in a proper and efficient manner.
- Minimise risks to the receiving environment and downstream water users.

The surface water management system is an integrated network of pipelines, drains, dams and sediment basins that provide dual purposes of water supply for on-site use and erosion and sediment control functions for runoff generated from disturbed areas. The water management system will be progressively developed over the life of the mine. A site water balance has also been developed to assess the performance of the water management system.

As part of the SSD approval, the eastern emplacement batters will be progressively rehabilitated which will significantly reduce the sediment load leaving the site. This work is nearing completion which will allow all future runoff from the Eastern Emplacement to be fully contained with the South Pit. Over the next three years, overburden will be used to:

- Backfill the South Pit and subsequently extend the emplacement of overburden to the west to create a single Southern Overburden Emplacement (SOE).
- Extend the existing Western Overburden Emplacement to the north.
- Construct a Northern Overburden Emplacement to adjoin the neighbouring Boral Peppertree's waste emplacement.
- except for the section of the SOE that drains directly to the South Pit, overburden and haul road drainage will be directed to a series of new sediment basins that have been appropriately sized.
- runoff collected in the sediment basins would either be pumped to one of the mine water dams for reuse in limestone processing or dust suppression or would drain to the mine pit.

An overview of the current water management plan is provided in Plate 2.

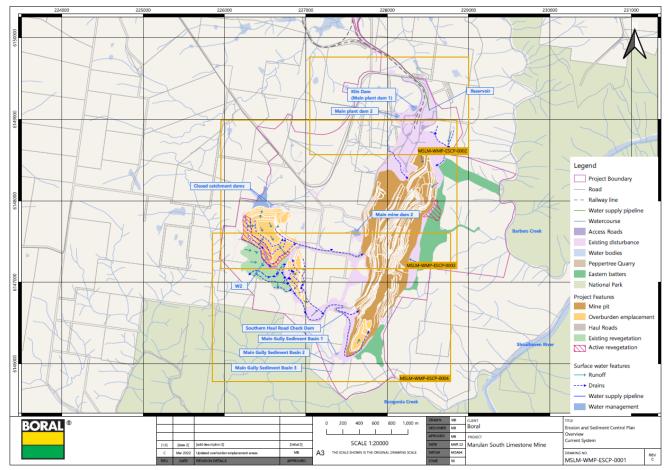


Plate 2 - Existing Surface Water Management System

7.2.2 Pollution Control Storages

A description of the current pollution control dams is provided in Table 7.1 while the estimated volumes stored within the pollution control structures is provided in Table 7.2.

Table 7.1 - Dam Descriptions

Dam name	Description
Clean Water Dam 1	Clean water diversion dam constructed in late 2007 above Main Plant Dam 2. Between Blue Lagoon and Kiln Dam
R Jean Waler Dam Z	Clean water diversion dam constructed as above but not previously recorded. Between Blue Lagoon and Kiln Dam
Minor Farm Dam 1	"Off-lease" farm dam upstream of Main Mine Dam 1. Near old weather station
Minor Farm Dam 2	Farm dam upstream of Main Mine Dam 1. Next to Black Dam
Minor Farm Dam 3	Potential New Clean Water Dam added as per MOP Plan 4-1. Near Substation
Minor Farm Dam 4	On Lime Dump Rd near Sweeper
Minor Farm Dam 5	Robs Farm House near Gate
Minor Farm Dam 6	Robs Farm House on bend in driveway
Minor Farm Dam 7	Robs Farm House NW larger than MFD8

Minor Farm Dam 8	Robs Farm House N smaller than MFD7
Minor Mine Dam 1	Clean water dam North of Main Gully waste emplacement. East of TRN compound
Minor Mine Dam 2	Clean water dam North-East of Main Gully waste emplacement. On metro road in new Central Dam area
Minor Mine Dam 3	Clean water dam, East of North Pit.
Main Plant Dam 1	"Off-lease" dam north of lime plant. Holds Tallong water and some plant area run-off
Main Plant Dam 2	Main lime plant water re-cycling dam on lease boundary. Blue lagoon
Main Mine Dam 1	Mine Dam 1 has been covered by the advance of the west emplacement.
Main Mine Dam 2	Mine water supply dam to west of shale road on boundary.
North Pit Void	Overflow from enlarged Kiln Dam and runoff from the plant (31 ha) northern catchment of the mine pit (68 ha). Not yet constructed- will be in an area of tyre storage behind secondary
Plant Sediment Dam	Small sediment pond upstream from Main Plant Dam 2
South Pit Void	See Note 4.
Southern Haul Road	Pre-treatment sediment check dam in roadside drainage. East of Maggie Dump
Check Dam	Near Main Gully diversion of southern haul road prior to entry to South Pit. No longer exists
Sediment Dams 1-3	Main Gully control and monitoring dams
Green Lagoon	Drainage line east of Dave Shep Drive
Swimming Pool	Western Batters Pit Void. Currently empty and will be mined and expanded in near future, may not hold water after that time.
Closed Catchment Dam	A closed catchment bordering the western emplacement and the western mine lease boundary.

7.2.3 Surface Water Monitoring and Reporting

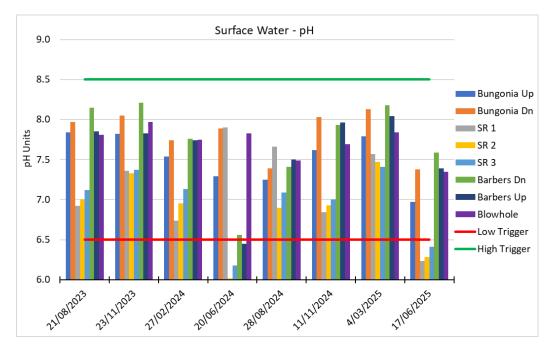
The approved surface water monitoring program is detailed in the Water Management Plan for the Continued Operations project. Surface water monitoring is undertaken quarterly at sites upstream and downstream of the mine. These sites include the Shoalhaven River, Bungonia Creek and Barbers Creek (Figure 5). An additional sample is taken from the lower end of the Blowhole, prior to entry into Bungonia Creek. The Blowhole is a groundwater seep, or spring which is representative of groundwater situated below the elevation of South Pit. The surface water monitoring results are outlined below in this section, and a comprehensive description can be found in the Surface Water Assessment Report attached as Appendix D.

Additionally, an automatic water sampler is located in the lower section of Main Gully which is triggered automatically when the water levels in the sediment control pond rise during a significant storm event.

No overflow events were recorded for the 2024/25 reporting year, the previous 2023/24 year results are stated in Table 7.2.

Table 7.2- Main Gully Overflow Water Quality Monitoring Results April and June 2024

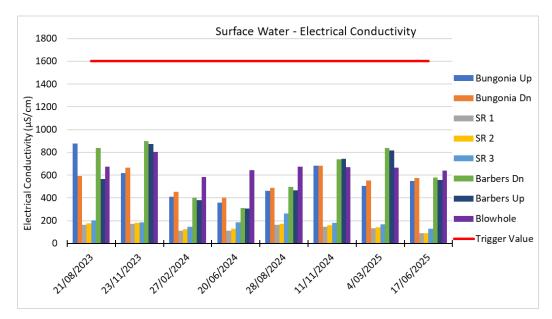
Date	pH Units	EC (μS/cm)	Suspended Solids (mg/L)	Turbidity (NTU)	Oil and Grease
6/04/2024	7.60	464	830	1720	<5
6/06/2024	7.31	437	1370	4650	<5
7/06/2024	7.72	514	306	640	<5
8/06/2024	7.93	631	155	234	<5
9/06/2024	8.02	664	60	88.2	<5
10/06/2024	8.03	676	57	76.6	<5
11/06/2024	8.04	694	56	70.4	5


^{*}Two individual events are separated by bold lines

Historically, results show that during storm events when discharge occurs, suspended solids can be elevated however pH and conductivity are comparable with Bungonia Creek. Figure 11 of Appendix D shows that suspended solids loading with Bungonia Creek rose slightly during the same period. Although the Main Gully discharge would have an influence on solids loading within Bungonia Creek, Figure 11 of Appendix D, shows that the upstream sample site in Bungonia Creek had a slightly higher suspended solids loading than the downstream site during this high rainfall period. Figure 27 of Appendix D shows that the Shoalhaven River was also elevated upstream of the confluence with Bungonia Creek indicating that there was widespread movement of sediment within the receiving waters during this period of high rainfall.

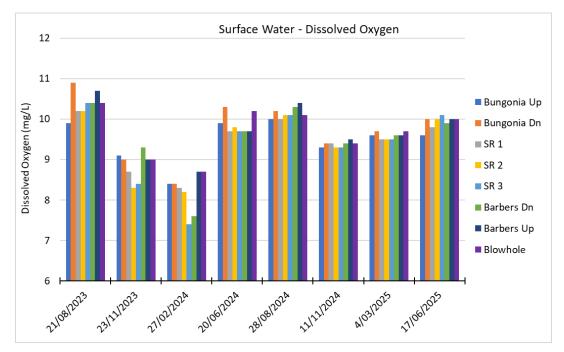
An extended ambient surface water quality monitoring program is also in place as envisaged in the EIS. Sampling was increased from biannual to quarterly at the beginning of 2023. This includes measurements taken from sites upstream and downstream of the mine on Bungonia Creek and Barbers Creek, at three sites along the Shoalhaven River (SR) and at the Main Gully Sample Point located downhill of the Spring (Blowhole).

Surface water trigger values have been outlined in the Water Management Plan and are noted in Graphs 7.1 - 7.6 below. The purpose of the trigger values is to provide indicators of whether the mine is having an influence on the receiving water quality. Graphs 7.1 - 7.6 present the water quality parameters over the last two reporting periods.



Graph 7.1 - Ambient Surface Water Quality - pH

Graph 7.1 shows the pH values of seven sample sites over the past three reporting periods and historically. SR1, SR2 and SR3 were within the high and low trigger values for August, November and March during the 2024/2025 reporting period, and results below the lower trigger level of pH 6.5 for the June 2025 sampling round, with the following values; SR1 pH: 6.23, SR2 pH: 6.28, SR3 pH: 6.41. SR1 is located in Bungonia Creek upstream of the mine and has a lower pH of SR2 located in Bungonia Creek downstream of the mine, indicating that the lower pH level is likely not related to mining activities. SR3 is located at the Shoalhaven River downstream of the confluence of Bungonia Creek, the low pH values indicates that the wider area was experiencing a lower pH value overall. All other pH results for the seven sample sites in the last reporting period and since February 2023 are within the upper and lower trigger values. The Blowhole average since May 2022 is 7.73 pH. The pH is governed by geological influences, particularly the large limestone deposit. Given the limestone's marine origin, salt level is also largely controlled by geological influences.



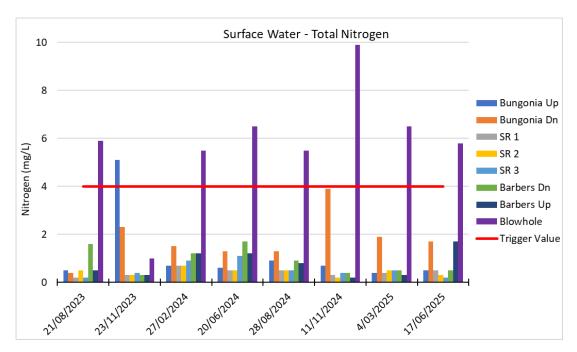
Graph 7.2 – Ambient Surface Water Quality – Electrical Conductivity

The electrical conductivity is significantly lower in the Shoalhaven River than all other sampling sites with a three-year average of 146 μ S/cm (Graph 7.2). Bungonia and Barbers Creek downstream three-year averages of 551 μ S/cm and 638 μ S/cm respectively lie significantly lower than the trigger value of 1600 μ S/cm, and show levels representative of the surrounding limestone aquifer. The three-year average conductivity values have dropped since the previous reporting period in Barbers Creek and Bungonia Creek. This may be due to the high rainfall experienced in recent years. The average electrical conductivity at the Blowhole recorded over a three-year period is 66 μ S/cm, which shows a 3 μ S/cm increase since the last period. Although the majority of levels of electrical conductivity have dropped during the reporting period, the water quality remains in a healthy and stable state.


The variation in pH and conductivity, which is a measure of salt, is considered natural and caused by surrounding marine based geological strata. The physical and chemical properties of Shoalhaven River will naturally vary as it passes through different geological strata and land uses. The variations would occur in mineral content, nutrients, pH and dissolved solids.

Graph 7.3 - Ambient Surface Water Quality - Dissolved Oxygen

The dissolved oxygen levels range from 7.4 mg/L to 10.7 mg/L with an average of 9.54 mg/L over a three-year period across all ambient surface water monitoring sites (Graph 7.3). Results show that the waterways have sufficient dissolved oxygen levels to support a healthy aquatic environment including fish populations.



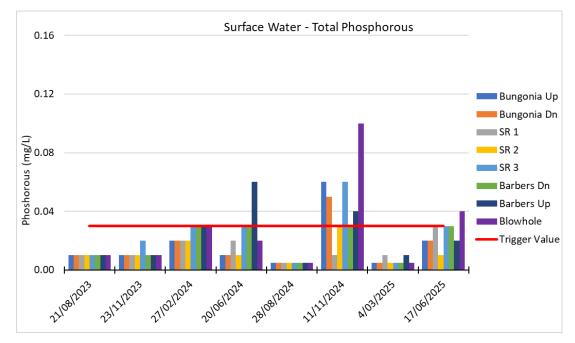
Graph 7.4 - Ambient Surface Water Quality - Total Suspended Particles

Suspended solid concentrations were below the trigger level at the Blowhole twice during the reporting period, and over the trigger level once (Graph 7.4). These elevated levels are likely due to the prolonged rainfall flushing out the sediment contained in the karst system over time. The levels were often under detection limits of 5 mg/L

(recorded as half of the limit value: 2.5 mg/L), the average over the reporting period across all sites excluding the blow hole was 3.71 mg/L.

Graph 7.5 - Ambient Surface Water Quality - Total Nitrogen

Total Nitrogen levels were the highest at the Blowhole with a three-year average of 5.8 mg/L (Graph 7.5). Concentrations at Bungonia and Barbers Creeks downstream locations remained below the trigger level of 4 mg/L with respective averages of 1.78 mg/L and 0.89 mg/L. All other sample locations remained below the trigger level in the reporting period.


Total Nitrogen is the combined value of both Nitrite (NH2-) and Nitrate (NO3-) in the natural environment, Nitrite readily oxidises to Nitrate. Laboratory results are presented as Nitrate+Nitrite-N which is their respective Nitrogen contents. The conversion for both are as follows:

- 1mg/L nitrate-N = 4.43mg/L nitrate
- 1mg/L nitrite-N = 3.29mg/L nitrite

The nominated trigger value of 4mg/L of Nitrogen is conservative. ANZECC 2000 guidelines state that Nitrate concentrations less than 400mg/L in livestock drinking water should not be harmful to animal health. The Australian Drinking Water Guidelines (2011) stipulate 50mg/L of Nitrate as an appropriate long term health criteria in drinking water.

Nitrogen and Phosphorous occur naturally but are also caused by agricultural fertilisers. Although Nitrogen levels at the Blowhole are uncharacteristically high, it does not pose a hazard to either humans or animals. However, the cause of the elevated Nitrogen is unknown. For natural systems to yield Nitrogen at the measured levels would indicate the presence of high levels of organic matter. As the volume of the Blowhole discharge is relatively small, there is only a minor increase in Nitrogen levels downstream.

Graph 7.6 - Ambient Surface Water Quality - Total Phosphorous

As shown in Graph 7.6, in the last reporting period phosphorous was above the trigger levels at a variable number of sites in November 2024, and the blowhole in June 2025. It is thought that the elevated concentrations during this time are a result of runoff from saturated soils in agricultural areas within the catchment following over a year of above-average rainfall and storm events. For the past two years the phosphorus levels have generally remained below the trigger level. The concentration of nutrients will continue to be monitored. The concentration levels are not likely to cause adverse algal growth within the receiving waters.

The WMP has also included a requirement to conduct quarterly stream and riparian vegetation health inspections of surface water monitoring sites. The inspections commenced in the 2023 reporting period and have involved photographing the channel and creek banks, description of the condition and noting any changes observed since the last inspection. The most recent inspection was conducted in June 2025 which concluded that there were no visual changes to the geomorphology or surrounding vegetation to the creeks and river which could be attributed to the mine with the exception of Barbers Creek where some evidence of sediment movement could be attributed to the rehabilitation slopes the movement of sediment downstream is a natural process and necessary to maintain a healthy river system. The assessment confirmed that based on the observations, there have been no impacts to groundwater dependent ecosystems, the alluvial aquifers or the natural springs within the gorge. The complete Surface Water Assessment Report has been attached as Appendix D.

7.2.4 Aquatic Biodiversity Monitoring

In accordance with the Biodiversity Management Plan, the spring baseline aquatic biodiversity monitoring was undertaken by Niche in November 2024. A total of 16 monitoring sites were included in the study across 5 stream networks, including three sites in Main Gully to assess the macroinvertebrate assemblages at Groundwater Dependant Ecosystem (GDE) survey sites which had not been previously monitored.

The sampling method used followed the NSW AUSRIVAS protocols for edge habitats. Samples were captured by sweeping a dip net through the benthic microhabitats at the site, and collected from a sorting tray using a pick method for 40 minutes. Invertebrate specimens were preserved in 70% ethanol and identified at the lab. A visual assessment of the aquatic habitat and physio-chemical field measurements were also taken in the field. Data analysis including the Observed to Expected ratio (OE50), Stream Invertebrate Grade Number Average Level (SIGNAL2), ETP Index and taxa richness were the key model outputs and stream health indices used to interpret stream health conditions under a spring model. Fish surveys were undertaken using eDNA sampling techniques.

Results showed that the upstream control sites were comparable to the downstream sites. A total of 14 fish species were detected, 12 of them native. The two species with the highest detection rate were the were the Long-finned Eel (Anguilla reinhardtii) and the Australian Smelt (Retropinna semoni), which were both detected at 10 out of the 15 sites.

While spatial variability was detected it could be concluded that the macroinvertebrate assemblages and stream health indicators show that the taxa composition and biological health of the five streams are comparable at the control and treatment sites along the streams. The fish assemblage sampling did not detect the presence of threatened species in either the 2014/2015 or the 2024 sampling. Both surveys had comparable common species detection with similar common species detected across the sites. Overall, the results suggest that eDNA sampling is a superior method for the Program, with far more species being detected, with the approach allowing for a greater level of spatial representation across the waterways being surveyed.

7.2.5 Future Improvements

Surface water management procedures will be amended and updated as required and as mining operations move forward in the upcoming reporting period. In particular, the specific surface water management controls to be implemented as part of the future Marulan Creek Dam and Marulan South Road alignment operations are to be aligned with the SSDA approval.

7.3 Groundwater Management

The quality and quantity of ground water may be impacted by sediments, dissolved salts, sewage effluent, hydrocarbons and chemicals generated or associated with surface water run-off from limestone mining and lime processing operations at the Marulan South Limestone Mine.

7.3.1 Monitoring and Reporting

There are three groundwater sources located on site, including a shallow unconsolidated aquifer within the weathered zone where groundwater exists between pores and deeper consolidated bedrock aquifer located between rock fractures.

A total of eight monitoring bores were installed in 2014 within and adjacent to the pit area to determine the baseline groundwater levels and quality for the SSD project groundwater assessment. Monitoring bores MW01 and MW02 were located in the north pit and south pit respectively and were removed as bench development progressed in 2017 and 2018. The six remaining bores are monitored for water quality twice-yearly. Screened formations of the bores include limestone, sandstone, weathered regolith and volcanics such as dacite, tuffs and andesite.

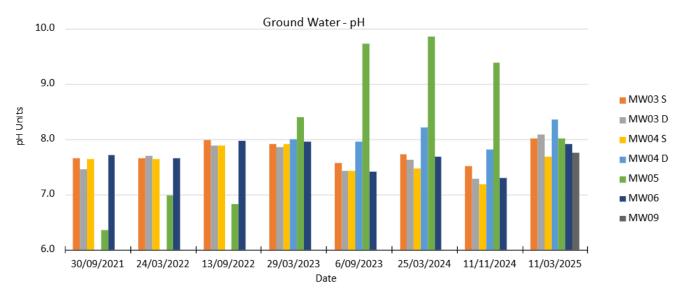
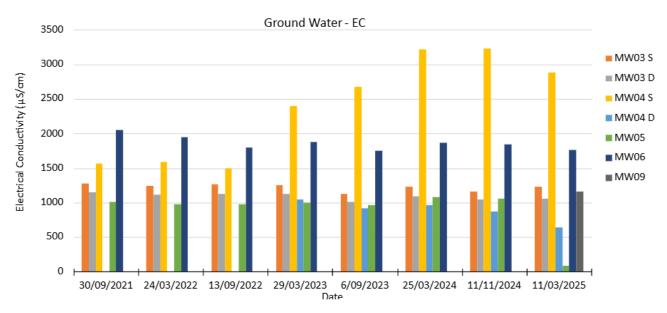

Monitoring Point 13 on EPL 944 requires monitoring of groundwater for oil and grease and suspended solids on a quarterly basis. Monitoring Point 13 is the groundwater bore MW05. Table 7.3 shows the results of monitoring as required by the EPL for the past two reporting periods whilst pH and conductivity are presented in Graphs 7.7 and 7.8 below.

Table 7.3 – EPL Monitoring Point 13

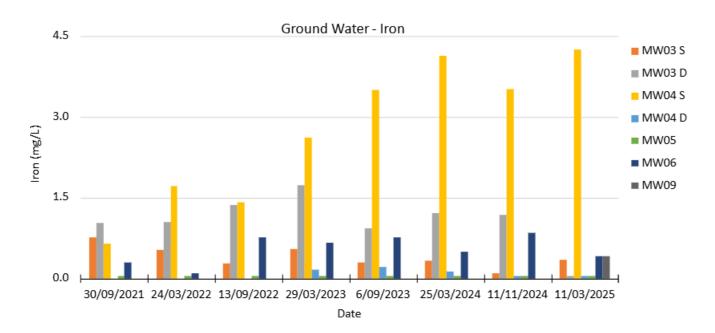
Date	Oil and Grease (mg/L)	TSP (mg/L)
25/11/2024	<5	16
17/12/2024	<5	102
11/3/2025	<5	54
18/06/2025	<5	41

All the results for the reporting period are below the detection limits for Oil and Grease. TSP ranges from 16 to 102 mg/L at the licenced monitoring point.

Graph 7.7 - Monitoring Bore Ground Water - pH


All bores excluding MW05 are neutral to slightly alkaline, within a 1 pH unit range (Graph 7.7). In the past, differences in pH levels have resulted from variability in host rock geology, although no such trends have been observed in the past two reporting periods. MW4D data began recording on the 29th March 2023, and MW09 on the 11th March 2025.

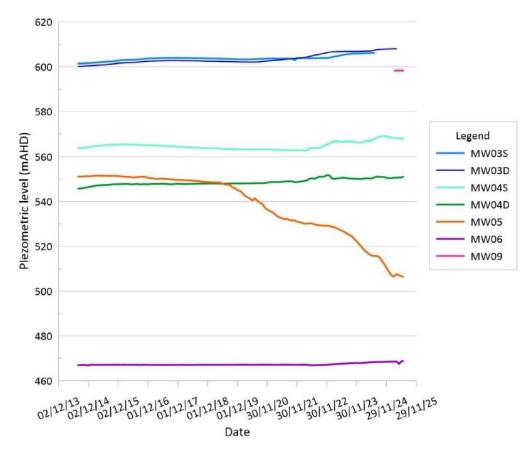
The pH of MW05 has been variable over the last three years and has shown a downward trend in this reporting period. The long term average from 2014 until the end of this reporting period is pH 8.56. During this reporting period the pH ranged from 8.01 to 9.38 pH units.


There is a positive correlation between pH and alkalinity, so as total alkalinity (ppm CaCO3) falls the natural buffering capacity of the water decreases as does its ability to neutralise acid, and pH decreases. The drop in pH was attributed to a decrease in water level which had reduced the aquifer's exposure to the baked limestone in the proximity of the bore, which in turn reduced its inherent carbonate concentration. The last three monitoring rounds show in increase in pH reflective of increased alkalinity.

Graph 7.8 shows variability among monitoring bore conductivity levels over the past three reporting periods. Host geology significantly influences conductivity of the bores, with limestone bores such MW05 with the lowest salinity ranging from 90 to 1080 µS/cm, and bores hosted in volcanics with conductivity levels as high as 2050 µS/cm at MW06 and 3230 µS/cm at MW04S which has been increasing over the past 18 months. This fresh to slightly brackish water is defined as 'marginal' for drinking water use, but suitable for stock water and aquatic ecosystems. During the reporting period, the 95th percentile trigger values for EC and dissolved iron (1738 µS/cm and 2.15mg/L respectively) for MW04S were exceeded for a third consecutive monitoring round in March 2024 triggering the TARP. Another round of monitoring undertaken in June indicated that concentrations had not decreased and as required by the TARP and an investigation into the cause of the higher concentrations were undertaken by a hydrogeologist. The report concluded that the exceedance is not related to the current Marulan South Limestone Mine operation as no changes to operation were made in the last two years. A review groundwater flowpaths and downgradient receptors conclusion. Recommendations from this report are noted in section 7.3.4 Future Recommendations.

Graph 7.8 - Monitoring Bore Ground Water - Electrical Conductivity

Graph 7.9- MW04S Dissolved Iron


7.3.2 Groundwater Levels

Groundwater levels are recorded daily from monitoring bores using pressure transduced piezometers. The piezometers are downloaded quarterly in correspondence with water quality sampling and the recordings are cross checked with manual water level measurements.

Historical water levels of bores in the pit contrast strongly with those located outside pit. Bores located in the pit such as MW01 and MW02 (both of which are now discontinued) had rapid responses to rainfall and runoff that seeps directly through the limestone. As an alternative, the remainder of the bores outside of the pit do not show variation associated with rain events because such fluctuation is buffered by the regolith situated above the groundwater level. The standing water level in these bores has either been fairly static or increased slightly since 2014.

The standing water level in monitoring bore MW05 presents a gradual decline from March 2017 until May 2019, plateaued for 18 months from 2021-2022 and has accelerated again until present. It is becoming clear that MW05 has been impacted by the mine extraction. The decrease in standing water level observed at MW05 was expected based on groundwater modelling predictions of pit development. It is believed that the rapid decline was a result of the removal of the cross-cutting dolerite dyke in the North Pit which appeared to be 'damming' groundwater up-dip. Since the water level of this bore is artificially high (perched) it is also not reflective of the impact the quarry is having on regional groundwater levels. MW03 and MW04 are more accurate representations of the surrounding granite groundwater systems which have not as yet been impacted by the limestone removal within the mine. Graph 7.10 below shows that bore levels as monitored since 2014.

Graph 7.10 – Average Monthly Groundwater Levels from Monitoring Bores

The WMP requires a comparison of groundwater levels with those recorded at the adjacent Peppertree Quarry. Graph 11 shows the hydrograph for bore PQ05D which is located to the west of the hard rock quarry, north of the Mine. There is an increasing trend in standing water level evident similar to those of MW03S and MW04S resulting from prolonged wet periods. The hydrograph results for PQ05D demonstrates that this bore has some level of connectivity to surface recharge and is therefore a good indicator of regional groundwater movements.

PQ05D

Figure 1

Figure 1

Figure 2

Figure 11 Hydrographs for Peppertree Quarry bores

Graph 7.11 - Peppertree Quarry PQ05D Hydrograph

The groundwater impact assessment conducted for the SSDA by AGE Consulting in 2019 does not predict any private bores will be impacted by drawdown greater than 1 metre during the 30-year SSD7009 consent period for the mine. The groundwater monitoring to date supports this conclusion.

7.3.3 Groundwater Review

Assessment of groundwater monitoring data is undertaken six monthly after each round of water quality sampling. The assessment includes graphing the data to determine if trends are developing. Particular attention is given to MW5 bore which is a licensed monitoring point. The assessment is undertaken in conjunction with the surface water monitoring and the River System Health assessment as described in the Groundwater Management Plan. A photographic record is kept for comparison and visual observations are compared to historical baselines observations and climatic conditions. Any ecological and environmental anomalies observed through ongoing ecological and environmental monitoring will be compared with the annual groundwater level data. Any significant variation or the appearance of adverse trends will trigger further investigation.

Routine groundwater monitoring at the mine seeks to identify any mine related impacts on the local aquifer systems. No specific groundwater monitoring is undertaken within the Bungonia Creek and Barbers Creek gorge due to the impracticality of installing groundwater monitoring infrastructure. The current quarterly monitoring program of groundwater levels coupled with six monthly water quality monitoring is sufficient to determine any potential trends in groundwater system changes as a result of the mine excavation. The groundwater monitoring program is also used to will identify any changes in stream and vegetation health which is an indicator of any impacts on Groundwater Dependent Ecosystems (GDEs) and general terrestrial and aquatic ecology.

Monitoring of the spring (also known as the Blowhole) is also covered in the Surface Water Management Plan. Spring flow is regarded as groundwater which becomes surface water in this case, and hence there is an overlap between surface water and groundwater monitoring. A photographic record of the Blowhole as well as quarterly water quality testing is documented. No changes to flow or water quality were recorded at the Blowhole in the reporting period, as discussed in the Surface Water Monitoring Report attached as Appendix D.

No alluvial aquifers are mapped along Barbers Creek, Bungonia Creek and the Main Gully southwest of the mine. The Shoalhaven River alluvial aquifers are situated outside the predicted zone of drawdown and not deemed necessary for groundwater monitoring.

MW3S&D decommissioned on 5th June 25 as per the stages outlined in the Water Management Plan to allow overburden emplacement. MW09 was installed in January 2025 and MW08 was installed in February 2025.

7.3.4 Future Improvements

The potential impact of the SSD7009 approved 30-year mining plan on groundwater was assessed by a numerical groundwater flow model which was prepared in accordance with the Aquifer Interference Policy. The assessment identified two risk areas. The first is the potential impacts on the quality and volume of groundwater flowing between the western mining area and the eastern Bungonia gorge system. The second is the potential risk to the water level at private bores located on the plateau to the west of the mine.

A model predicted that there will be only a minimal change in groundwater resources outside the limestone bodies following the mining project. The dolerite dyke running through the current north section of the northern pit is the only barrier identified to potentially prevent drainage in the future. The assessment also found that assuming no changes to the pit fractures, there will be a slight increase in recharge into the limestone from a larger overall mine pit area and increased flow into Bungonia Creek.

There are no specific groundwater mitigation measures required however Table, Condition B43 of SSD7009 provides performance indicators applicable to groundwater. In order to verify the impact predictions made in the EIS and to confirm adherence to the performance indicators, the existing groundwater monitoring program will be enhanced. This includes monitoring of the production bore WB07 and the newly installed bores MW8 and MW9. MW08 was installed January 2024 and MW09 installed in February 2024.

MW4D had exceeded high trigger levels for dissolved iron and electrical conductivity in March 2023, September 2023, March 2024 and September 2024. The TARP was enacted per the Groundwater Management Plan and a Hygeologist was engaged to investigate whether the results were due to mine related activities. The report concluded that the exceedance is not related to the current Marulan South Limestone Mine operation where no changes to operation were made in the last two years. Review of historical data, groundwater flow paths and downgradient receptors also confirms this conclusion.

Recommendations from this report were to:

- Develop MW4S by air lifting to clear out sediment that has potentially built up contributing to erroneous results.
- Water sampling to be undertaken by either hydrosleeve or the current method of a double valve bailer.
- Update the baseline data that the triggers are based on by including data from 2020 to 2024.
- Prepare an Annual Groundwater Review.

MW4S was airlifted 6th June 25 to clean out any sediment build up that may have blocked the screen. The results of the next round of sampling in September 2025 will be observed for changes in electrical conductivity and dissolved iron to determine if the air lift was successful. The baseline triggers will then be updated as determined in consultation with a hydrogeologist to incorporate long term monitoring trends and the natural flux dependent on rainfall as found in the report triggered by the TARP.

7.3.5 Verification

A Trigger Action Response Plan has been developed which forms the basis for ongoing assessment of potential groundwater impacts. The following key actions and responses will be undertaken if a trigger threshold is exceeded.

- The re-confirmed exceedances will prompt an investigation, conducted by suitably qualified personnel, to determine the reasons for the exceedance, which could include but not be due to the influence of climatic conditions, agriculture abstraction or mining activities.
- In the case exceedances are attributed to mining activities, changes in groundwater conditions, such as a decrease in water level or increase in salinity, will be compared to performance measures to evaluate the significance of any impacts on the groundwater system.
- Furthermore, the response and action to trigger exceedances in the TARP should determine if the trigger event resulted in an incident.

The results of the trigger investigations will be reported in each Annual Review. If it is clear each year that the groundwater baseline is changing in response to factors not related to mining such as climate or other land uses then the trigger thresholds will be recalculated. If this occurs the Ground Water Management Plan will be updated.

7.4 Water Access Licences and Water Take

Water take for the reporting period is detailed in Table 7.4 below.

Table 7.4 - Water Take

WAL	Works Approval	Water Source	Entitlement (ML)	Water Use (ML) 2023/2024
WAL25207	10WA102352	Shoalhaven River Water Source	76	76
WAL25373	10WA102377	Shoalhaven River Water Source	10	10
WAL25352	10WA102352	Shoalhaven River Water Source	1	1 (Stock and Domestic, used for domestic purposes only)
WAL24697	10WA115141 And 10WA116142	Goulburn Fractured Rock Groundwater Source	12	0
WAL41976	10CA122907 (statement of approval)	Goulburn Fractured Rock Groundwater Source	838	4.7

The volume of incidental groundwater intercepted in the mining areas will be estimated using the site water balance model each calendar year. The site water balance method compares rainfall and runoff inputs to the pits with pumping outputs and storage changes to estimate incidental groundwater take from the mining areas. This data will be published in subsequent annual reviews.

8 REHABILITATION STRATEGY

A Rehabilitation Strategy was prepared for the site as required by the consent for the Continued Operations Project which was approved by DPE on 16th September 2022. This chapter summarises the environmental performance compared to the requirements of the Rehabilitation Strategy.

8.1 Rehabilitation Risk Assessment

The Rehabilitation Strategy was prepared in March 2022 and reviewed in December 2024 with no changes made. This strategy included:

- Rehabilitation Objectives;
- Rehabilitation Completion Criteria;
- · Conceptual Final Landform; and
- Rehabilitation Risk Assessment.

The Rehabilitation Strategy identified the key constraints to achieving rehabilitation success. These are:

Soil pH conditions: The overall limited availability of topsoil material suitable for use in rehabilitation is exacerbated by elevated pH levels exhibited in the overburden materials used as growth medium layers to date. This has impeded the successful development of a growth medium layer that can support rehabilitation.

Steep slopes: Although overburden emplacements have been designed to mimic adjacent natural steep slopes, landform steepness has contributed to rehabilitation establishment issues in some emplacements, leading to potential derivative impacts of erosion and downstream water quality impacts.

Climate: Highly variable and irregular climatic conditions hinder rehabilitation development. Such conditions include hot summers, cold winters and periodic droughts. It is important to plan towards rehabilitation in the traditional windows of Spring and Autumn but allow flexibility in long term rehabilitation planning to allow for drought periods and capitalising on La Nina (wetter) periods.

Water supply: Rehabilitation success has been impacted upon by water shortages following good initial germination. Irrigation trials have been set up previously, with limited success. The most effective irrigation has been natural rainfall.

Environment: Local environmental factors resulting from mine location have impeded rehabilitation establishment. Such factors include browsing by herbivorous pests such as goats and rabbits, native macropod species, as well as weed competition.

Measures to reduce these risks have been incorporated into the design of the rehabilitation program which are discussed further in the following sections.

8.2 Rehabilitation Objectives

The current rehabilitation strategy encompasses the following landform objectives across all rehabilitation domains:

- Rehabilitated land will be geotechnically stable and will not present a greater safety hazard than surrounding land to land-users, public, livestock and native fauna accessing or transiting the post-mining area;
- Land capability will, at a minimum, be returned to a class similar to that existing prior to Project commencement (Class V, VII or VIII);
- Except for mine void, mined land will be visually compatible with the surrounding natural landscape.
- Rehabilitated landforms will be designed to shed water without causing excessive erosion or increasing downstream pollution.

 Rehabilitated landforms will not negatively impact visual amenity for nearby residents and users of conservation reserves.

8.3 Site Domains

Mining domains were previously referred to as "primary" domains which are operation based such as infrastructure areas and overburden emplacements and final land use domains were previously known as "secondary" domains indicating post-mining land use objectives. The domains are shown in Figure 6 and Figure 7, and outlined in Tables 8.1 and 8.2 below.

Table 8.1 - Mining Domains

No.	Domain	Site Name	Vegetation Community	Area (Ha)
A1	Infrastructure Area	Building, access and railway infrastructure	PCT1334	1.07
A1	Infrastructure Area	Mine infrastructure	PCT1334	18.07
A4	Overburden Emplacement Area	Eastern Batters Bryces Gully	PCT778	10.85
A4	Overburden Emplacement Area	Eastern Batters Barbers Creek	PCT778	19.46
A4	Overburden Emplacement Area	Eastern Batters Bungonia Creek	PCT778	6.81
A4	Overburden Emplacement Area	NOE Peppertree	PCT1334	0.08
A4	Overburden Emplacement Area	NOE	PCT1334	37.34
A4	Overburden Emplacement Area	SOE	PCT1334	28.60
A4	Overburden Emplacement Area	WOE	PCT1334	146.97
A4	Overburden Emplacement Area	SOE Middle Gully	PCT1334	33.20
G3	Water Management Area	Central Dam		3.80
G3	Water Management Area	Closed catchment Dam		0.53
G3	Water Management Area	Eastern gully Dam		1.26
G3	Water Management Area	Kiln Dam		1.21
I1	Infrastructure Area	Mine Infrastructure	PCT1334	17.37
I1	Infrastructure Area	Retained haulroads and access		17.08
I1	Infrastructure Area	Building, access and railway infrastructure		1.20
I1	Infrastructure Area	Rail Line	PCT1334	4.67
J5	Active Mining Area (Open Cut Void)	Open Cut Mine		155.37
J5	Active Mining Area (Open Cut Void)	Open Cut Mine- Backfill		16.78
Total				521.70

Table 8.2 - Final Land Use Domains

No.	Domain	Mining Domain	Area (Ha)
A1	Native Ecosystem	Infrastructure Area	19.14
A4	Native Ecosystem	Overburden Emplacement Area	283.30
G3	Water Management Areas	Water Management Areas	6.80
I1	Infrastructure	Infrastructure Area	40.32
J5	Final Void	Active Mining Area (Open Cut Void)	172.15
	Total Area		521.70

8.4 Rehabilitation of Disturbed Land

8.4.1 Seed Sources and Application

Seed spray trials conducted at the south-western end of the Western Overburden Emplacement during 2020 showed best results with Flexterra FGM with ryegrass and couch cover seed mix. This therefore has been selected from the trials and will be used to rehabilitate the remainder of the Western Overburden Emplacement area. To date, the seeding has taken well as a dense mat of clover is visible.

Topsoil spreading was undertaken as a substitute to hydromulching this reporting period to take advantage of available topsoil and in response to recommendations made by the hydro mulching contractor regarding the suitability of forecasted weather conditions in the Spring. The topsoil applied to the Southern Emplacement rehabilitation embankment had good ground cover grown from the recovered topsoil from cleared areas, no hydroseeding was required.

8.4.2 Rehabilitation Activities

The site achieved a total of 10.85 hectares of land prepared for rehabilitation during the reporting period. Rehabilitation activities undertaken during the reporting period are detailed in the following sections.

Western Overburden Emplacement

During the reporting period, overburden continued to be emplaced in the WOE extension to Marulan South Road and the portion that has achieved final batter height is allocated as a topsoil storage area. At the end of the reporting period a small section of topsoil rich in seed had begun to be stripped and relocated from adjacent Marulan South Rd to make way for the WOE expansion. This topsoil was stockpiled according to best practices and will be taken to the topsoil storage area where it will be spread on the next available rehabilitation batter. During the reporting period 5.1 hectares of the WOE had trees planted in some areas that were previously planted where there was no success rate. The re-planted trees were put in better soil than used previously and with fertilisers.

Southern Emplacement Rehabilitation Batters

During the reporting period a portion of the lower batter of the Southern Emplacement rehabilitation batters was shaped, topsoiled, groundcover established through seedbank in the topsoil and tubestock planted (Image 1 of Plate 3). The tubestock that was planted had specialised fertiliser applied and companion planting in a wire protective cage to prevent grazing and promote survival rate with an aim to better understand factors that affect the success of tubestock planting.

Plate 3 Southern Overburden Emplacement Batter and Western Overburden Emplacement Rehabilitation

Bryce's Gully

The site-specific Bryce's Gully Rehabilitation Strategy was implemented in 2019. The general objectives for rehabilitation of the gully are to construct a geotechnically stable landform which does not present a greater safety hazard than the surrounding land; create land to be visually compatible with the surrounding natural landscape and to not negatively impact the visual amenity of the gully. The rehabilitation progression is monitored annually using EFA (See Section 8.4).

A Geotechnical report on Bryce's Gully was completed during 2023 which deemed the slope unstable at this time (See Section 6.11). It was advised that personnel should avoid entering this area as it may not be safe. Rehabilitation works have been put on hold until actions can be put forth to ensure slope stability.

November 2024

Plate 4 Bryces Gully bench 2 (EFA site 4)

8.4.3 Feral Animal Control

There has been much habitat disturbance on the project site associated with feral animals including rabbits, brown hares, foxes, goats and more recently deer. During the reporting period feral animal control was undertaken via aerial culling by National Parks and Wildlife (NPWS) across the months of November 2024 and March 2025, removing a total of 8 pigs and 3 goats. On the 3rd June 2025 a pest controller culled two deer.

8.4.4 Weed Management

The Weed Management Implementation Plan was recently revised in December 2023. Three WoNS/state priority weeds, including 3 regional priority weeds, Blackberry, Serrated Tussock and Pampas Grass were recorded on site in the reporting period. The objective for the WoNS/state priority weeds is asset protection- to prevent the spread of weeds to key sites/assets of high economic, environmental and social value, or to reduce their impact on these sites if spread has already occurred.

Weed monitoring and control during the reporting period focused on the control of pampas grass, black berry. An agricultural grade drone was used to spray the pampas grass on the benches of the pit in June, 2025. Blackberry Spraying was conducted at the end of the black berry season in April, and the rehabilitation areas were sprayed for pampas grass and seed heads cut off to prevent spread. Serrated tussock was treated in the FY26 reporting period in August around the substation area.

8.5.5 Rehabilitation Monitoring – Ecosystem Functionality Analysis

An Ecosystem Function Analysis (EFA) developed by Tongway and Hindley (2004) is being utilised to assess the rehabilitation progression at the mine. The EFA monitors transects to measure the landscape function, vegetation dynamics, habitat complexity and disturbance. These measures are converted into indices for comparisons of rehabilitation over time and to undisturbed reference sites. The methodology used does not replace the traditional methods of monitoring vegetation and fauna but adds a functional interpretation to link vegetation structure and organisation more closely with soil function and the development of habitat for native fauna.

The site is surrounded by National Park and State Conservation Area bushland to the South and East, and farmlands to the North and West. The end result of the rehabilitation process is a return of the site to natural woodland where possible, or as sustainable grazing pasture where appropriate. Monitoring surveys are scheduled to occur on an annual basis in spring each year. A total of five transects, including one reference site were surveyed, as described in Table 8.3 below.

Table 8.3- Transect Description

Transect	Landscape Position	Comments
Reference 1 (R1)	South-West of the WOE	Has not been disturbed by mining activities
	Located at the northern end of the WOE, Domain 4.1w in the 2018-2023 MOP	Monoculture of <i>acacia</i> species with juvenile <i>Eucalypts</i> . Rehabilitated in 2005 and 2008. Discontinued due to expansion of the west overburden emplacement.
T2	South of the active area within the WOE, Domain 7.1w in the 2018-2023 MOP	Flat ground with groundcover of weed species and older monoculture of <i>Acacia</i> . Rehabilitated in 2005.
T3	Far south of the WOE Domain 7.1w in the 2018-2023 MOP	Rehabilitation occurred in 2017. Many <i>Acacia</i> with juvenile <i>Eucalyptus</i> and <i>Allocasuarina</i> . Many weeds present.
T4	Second bench of Bryces Dump Domain 7.3e in the 2018-2023 MOP	Stable slope, high vegetation cover is mostly weeds, moss and dying serrated tussock. Rehabilitated in 2019/2020
T5	WOE - first bench, Domain 4.1w in the 2018-2023 MOP	Transect established April 2021. Rehabilitation trial conducted January 2019. High grass, broadleaf weed density with increased <i>Acacias</i> on lower half.

A summary of the November 2024 EFA results are presented below, while the complete report is provided as Appendix C.

Field surveys involved the collection of patch/interpatch and soil surface condition data for each transect. This data is used to calculate the landscape organisation, soil stability, infiltration and nutrient cycling indices. The landscape organisation and soil surface assessments are most useful when compared over time, during subsequent monitoring surveys.

Table 8.4 contains the Landscape Function Analysis (LFA) and Soil Surface Assessment (SSA) results. Minimal changes to soil characteristics were measured in November 2025. Soil structure takes many years to develop, and it takes many years for a soil type to change its composition. The proportion of bare ground is now negligible at all sites apart from Site 3 due to increased native ground cover, annual weed growth and increase leaf litter.

A stable soil surface with no visible erosion was observed at Site 2, with no moss visible at this site compared to last year due to recent dry months. Site 3 had comparatively low stability, infiltration and nutrient cycling indices of 55, 59 and 47 respectively, however the soil surface indices have also improved over the past 12 months. The amount of bare ground has reduced significantly, from previous records of 50% bare ground to a current bare ground coverage of only 5%. The groundcover at Site 4 is excellent, and the herbaceous weeds are gradually being outcompeted by pasture grasses. The embankments are stable due to the high vegetation cover, and therefore there is little sedimentation evident from runoff and the drainage lines are clear. Site 5 has an LOI index of 90, with 10% bare ground visible in 2024. Site 5 had a relatively high stability (65), level of infiltration (62) and nutrient cycling index (63) which were similar to, or higher than the reference site.

Table 8.4- Landscape Function Analysis and Soil Surface Assessment Results

Index	T2	Т3	T4	T5	Reference
Stability	72.1	58.3	71	63.2	75.4
Infiltration	69	60.2	56.3	61.4	55.2
Nutrient Cycling	57.7	49.1	70.3	63.7	57.6

Vegetation Composition is measured by species richness at three strata levels and by cover percentages (Table 8.6). The canopy is split into middle (1-3m tall) and upper canopy (>3m). Stem count is used as a measure of vegetation density.

Between November 2023 and November 2024 there has been a reduction in groundcover across all sites as groundcover species emerge and the leaf litter layer develops further. The Landscape Function Analysis has deemed that the proportion of bare ground cover is now negligible at all sites.

The reference site has a high canopy cover score, but less ground and shrub cover and a high proportion of leaf litter. Site 4 is mostly groundcover and leaf litter with vegetation increasing into the shrub layer and has minimal trees at this stage. Over time as trees emerge the ground cover will reduce and leaf litter increase.

Site 3 is in the early stage of rehabilitation and shows signs of rehabilitation and improvement in groundcover and leaf litter is increasing over time. Site 2 is an older rehabilitated area and has a higher canopy and leaf litter approaching the proportions observed in the reference site. There was greater shrub cover at T2, and a lower canopy cover percentage as acacias start to fall at the end of their life span.

Table 8.5- Vegetation Composition Results

Species Richness	T2	Т3	T4	T5	Reference
Groundcover	25	17	31	29	23
Shrub	3	2	2	2	7

Canopy	4	7	3	2	7
Average Cover (%)					
Groundcover	48	22.75	52.5	39	13.08
Shrub Cover	12.5	5	18.75	5.5	4.75
Leaf Litter	46.5	51	46.4	38.5	78.75
Bare Ground	5.5	26	4.6	15	7
Canopy Cover	49.5	12.25	0	33.5	23.5
Total Stem Density Count					
1-3m	1	9	4	2	1
3m+	10	0	0	14	2

Habitat complexity examines the extent of environmental niches, shelter and food resources available for vertebrate fauna. The reference site has a high habitat complexity index with a score of 9 and a permanent water body adjacent (Table 8.6). During November 2024, all sites were 'moist' with a sore of 1 following consistent rainfall in months prior to monitoring. Favourable conditions resulted in an increased tree and herb percentages at sites T2 and T3, while there was a decline in litter % from >70% to 30-70% at T2. Habitat complexity can be easily improved in rehabilitation areas by the inclusion of brush matting such as logs, branches and debris. There is evidence of this having originally occurred in some of the rehabilitation areas, and this should improve over time.

Table 8.6- Habitat Complexity Scores

Transect	2	3	4	5	Reference
Tree Canopy %	3	1	0	1	2
Shrub Canopy %	2	2	1	1	1
Ground Herb %	2	2	2	2	1
Litter %	2	2	2	2	3
Water Availability	1	1	1	1	2
Habitat Complexity Index	10	8	6	7	9

The EFA monitoring program is primarily designed to track rehabilitation progression and success through time. These results can be used as a baseline for the future.

8.5.6 Rapid Visual Assessment

As a requirement of the BMP (Section 7.3), the Rapid Visual Assessment (RVA) was added to the rehabilitation monitoring schedule during the reporting period. The BMP incorporates the relevant management measures presented in the EIS, Response to Submission and Condition B54 of SSD7009.

Each RVA site is traversed on foot and assessed for the following:

- evidence of regeneration;
- presence of mine rubbish;
- evidence of grazing;
- presence of exotic weeds

- · presence of feral animal species
- presence of domestic litter / rubbish;
- fire disturbance;
- presence of salvaged habitat and nest boxes;
- · evidence of nearby maintenance activities; and
- surface stability and erosion.

Outcomes of the RVA will also be reported against performance indicators and completion criteria provided in Table 6.1 of the Biodiversity Management Plan. A total of 8 RVA sites were determined and examined in November 2024 as per Table 8.7 and 8.8 below.

Table 8.7 - RVA site locations

Site ID	Description	Southings	Eastings
RVA1	Near Bryces Dump	S34°46'21.48"	E150°2'7.85"
RVA2	Near Maggie Dump	S34°47'15.31"	E150°1'7.52"
RVA3	EFA Site T5	S34°46'42.41"	E150°0'36.77"
RVA4	EFA Site T2	S34°46'49.86"	E150°0'40.27"
RVA5	EFA Site T3	S34°46'53.03"	E150°0'36.50"
RVA6	EFA Reference Site	S34°46'52.97"	E150°0'36.75"
RVA7	Lime Dump Road Nth	S34°46'52.53"	E150°0'35.05"
RVA8	Lime Dump Road Sth	S34°46'30.11"	E150°1'16.38"

Table 8.8 - RVA November 2024 Summary of Observations

Transe ct ID	Disturbanc e freq/ intensity	natural	Presence/absen ce feral animals	Mine Rubbis h	Grazing/Anim al Pads	Weed Cover	Wind erosio n		Maintenanc e Activities	Fire freq /intensity/heig ht	Salvage d Habitats
Units	3/3	Y/N	Y/N	Y/N	Y/N	%	3	3	Y/N	3/3/3	Y/N
	2/1 feral animals	yes- sprouting euc and olearia	IY - doat track	electrica	No grazing, yes kangaroo scat	10	0	0	No	0/0/0	No
RVA2	2/2	Υ	n	No	only native	25	0	0	No	0/0/0	No
RVA3	0/0	Y - acacias	Y deer scat	IIXIO .	Y deer, roo, wombat scat	30	0	0	No	0/0/0	No
RVA4	(1/(1	yes acacia+euc	Y deer/rabbit scat, deer antler, deer scratches		Y deer, rabbit, roo, wombat		0	0	No	0/0/0	No
RVA5	0/0	No	Y deer and rabbit scat	No	Y deer, rabbit, roo, wombat	30	0	0	No	0/0/0	yes logs
RVA6	0/0	Y	No	No	No	2	0	0	No	0/0/0	No
RVA7	0/0	Y	No	Y- wire	No	50	0	0	No	0/0/0	No

RVA8	0/0	Υ	y rabbit scat	No	No	60	0	0	No	0/0/0	No
											ľ

Key:1= mild, 2=moderate, 3=extensive

Outcomes of the RVA are reported against performance indicators and completion criteria provided in Table 6.1 of the Biodiversity Management Plan. Recommendations specific to this round of the RVA are provided in Table 8.9 below.

Table 8.9 - Recommendations

Site ID	Recommendations for remedial action
RVA1	Removal of mine rubbish
RVA2	Treatment of the serrated tussock
RVA3	Feral animal control plan including deer
RVA4	Feral animal control plan including deer
RVA5	Native seed sowing or planting of tubestock, in particular on the lower half of this embankment.
RVA6	No actions required
RVA7	Treatment of the serrated tussock Removal of mine rubbish
RVA8	Treatment of the serrated tussock

These are the results of the first RVA undertaken under the Marulan South Limestone Mine Biodiversity Management Plan. Monitoring sites have now been established and will be monitored on a 12 monthly basis. Some initial recommendations have been made which will form part of the overall management of rehabilitation work at the mine. The complete RVA report can be found in Appendix C of the Ecosystem Function Analysis Report which is attached as Appendix C of this Annual Review.

8.5.7 Progressive Rehabilitation Strategy

The Marulan South Limestone Mine has a progressive rehabilitation strategy which considers the continued 30 year SSDA mine operation. The rehabilitation strategy has been updated to satisfy the consent conditions. Stage 1 rehabilitation activities area proposed over a five year period commencing 2023 and include the following activities:

- Establish existing rehabilitation or 'ecosystem and land use establishment' over 16.5 ha of the lower slopes of the WOE and the 2.4 ha of the active Barbers Creek overburden emplacement.
- Commence growth medium development or active rehabilitation over 10.2 ha of the western and northern lower slopes of the completed NOE.
- Commence active rehabilitation over 20.8 ha of the western and northern lower slopes of the extended WOE. In addition, any final batters constructed for the associated central dam and similarly for the Eastern Gully dam would be revegetated for slope stabilisation.
- Commence active rehabilitation of 1.7 ha of the south-eastern 'outer' slopes of overburden backfilled into the in-pit part of the SOE.

The dumping of overburden will focus on the south pit and WOEB "Noise Wall", where final shaping can be achieved. The rehabilitation of the emplacements is scheduled so that revegetation can commence following each lift stage of the emplacement. This ensures rehabilitation occurs as quickly as practicable.

The following actions may need to be taken as per recommendations from the LFA/EFA rehabilitation monitoring program:

- The vegetation zone at Maggie Dump is described as moderate health, with vegetation integrity scores of 38.7 and 55.8. Improving health in this vegetation zone would focus on enhancing species richness
- LDR: Function could be improved through management of HTW, namely Nassella trichotoma, improvement of fallen log length and the number of large trees (DBH>50cm).

8.6 Further Development of the Final Rehabilitation Plan

The Rehabilitation Management Plan was submitted to the Resources Regulator on the 29th December 2023. A final land use statement is outlined in the plan which provides the rehabilitation objectives as per SSD 7009 CoC B76.

The rehabilitation objectives involve rehabilitation of all out-of-pit overburden emplacements and infrastructure sites to a native vegetation community. The final void will be reduced by partial in-pit placement of overburden in the south pit with additional visual screening of the extraction area. Areas proposed for native ecosystem reestablishment will be restored to self-sustaining native woodland ecosystems. The revegetation will aim to establish local plant community types, with a focus on species commensurate with White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland CEEC.

The completion criteria specified in the SSD EIS and approved Rehabilitation Strategy commitments include a minimum of 70% vegetation cover, 50% if rocks, logs or other features of cover are present and no areas of weed infestation. Table 8.7 below summarises the rehabilitations objectives from the Rehabilitation Management Plan.

Table 8.7 Rehabilitation objectives.

Feature	Objective
All areas of the site affected by the development	 Safe, stable and non-polluting Fit for the intended post-mining land use/s Establish the final landform and post-mining land use/s as soon as practicable after cessation of mining operations Minimise post-mining environmental impacts
Areas proposed for native ecosystem re-establishment	 Establish/restore self-sustaining native woodland ecosystems Establish local plant community types, with a particular focus on species commensurate with White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland CEEC
	 Establish: riparian habitat within any retained water features; habitat, feed and foraging resources for threatened fauna species (including the Koala); and vegetation connectivity and wildlife corridors, as far as is reasonable and feasible
Final Landform	Stable and sustainable for the intended post-mining land use/s

 Integrated with surrounding natural landforms and other mine rehabilitated landforms, to the greatest extent practicable
 Incorporate micro-relief and drainage features that mimic natural topography and mitigate erosion, to the greatest extent practicable
 Maximise surface water drainage to the natural environment i.e. free draining (excluding final void catchment)
Minimise visual impacts, where practicable
 Designed as long term groundwater sink to prevent the release of saline water into the surrounding environment, unless further mine planning and final landform design processes identify a more suitable outcome for the final void (see condition B79)
 Maximise potential for beneficial reuse, where practicable
Minimise to the greatest extent practicable:
the size and depth;
the drainage catchment;
any high wall instability risk; and
the risk of flood interaction
To be decommissioned, removed and rehabilitated, unless the Resources Regulator agrees otherwise
 Water retained on the site is fit for the intended post-mining land use/s
Water discharged from the site is suitable for receiving waters and fit for aquatic ecology and riparian vegetation
Ensure public safety
Minimise adverse socio-economic effects associated with mine closure

9 COMMUNITY RELATIONS

The Marulan South Limestone Mine has been owned and operated previously by BCSC and now Boral Cement Limited since 1987 and continues to provide direct employment currently for approximately 95 local people who travel from the towns of Goulburn (35kms), Marulan (12kms), Berrima (60kms) and surrounding areas.

Services provided by Boral Cement include a contracted bus service for employees travelling from Goulburn. In addition, a helicopter landing station is maintained in support of emergency responses, which may occur on site or in the adjoining Bungonia National Park and State Conservation Area.

During the reporting period, meetings have continued for the Marulan South Operations CCC. Meetings are held on a four-monthly from February 2025. Committee members are emailed an update including the monitoring data from the previous quarter. Minutes from the meetings are provided on the Boral Marulan South Operations website.

9.1 Environmental Complaints and Enquiries

14/3/25	7:45am	Community Member	Peppertree received a call from a community member near Longpoint Lookout with a noise complaint. PT Site and Production Managers went to the location and could only hear rocks falling onto the surge however the noise in the complaint was described as a fan. The kiln, top, bottom section of production and reclaimer were not working at the time of complaint, the noise waws not identified, and it was found that a temperature inversion may have been a contributing factor.
6/5/25		Community Member	Boral received an email from the EPA stating that they had been contacted by a member of the public with a complaint regarding the water quality at Bungonia Creek. Photos were submitted from Sunday the 4th May showing silty water. Main Gully had been checked three days prior to this, with images from the inspection showing good water quality (not silty) and no overflow event. There was no rain between Main Gully inspection and the day the member of the public was there and took photos.

9.2 Community Liaison

Boral conducted a specific community liaison program as part of the SSD approval process in addition to its normal ongoing community engagement activities. The additional liaison provided information on community attitudes and concerns which assisted in the development of the ongoing mine operation strategic planning and environmental mitigation strategies.

The current engagement activities include:

- Regular community newsletters;
- Active participation in local events;
- Arranging site inspections and one on one consultation;
- Active engagement with key government and non-government organisations; and

 Maintenance of an environmental and community complaints register and actively managing and resolving community issues as they arise.

9.3 Community Involvement

Boral is engaged in local community events and has been involved in some of the most significant events since 2011. Boral is a proud major sponsor of the Tallong Apple Day Festival held annually in September. The Goulburn Mulwaree Council community bike ride, a sponsor of the Tallong public school numeracy award and Careers Expo. Monetary contributions to Tallong and Marulan primary schools were made in the reporting period.

10 INDEPENDENT AUDIT

In accordance with Condition D13, an Independent Environmental Audit (IEA) was required to be undertaken within one year of the SSD approval. The first IEA was conducted in March 2024 by EPS for the period from the 1 January 2023 to 31 December 2023. The following provides a status of the audit findings.

Two low-risk non-compliances were recorded from the IEA which are outlined below in Table 10.1. The overall environmental performance based on the observed condition of the site was considered satisfactory.

Table 10.1- Non-Compliances

Number	Details	Audit Findings
A19	Within 12 months of the date of commencement of development under this consent, or other timeframe agreed by the Planning Secretary, the Applicant must surrender the existing development consents dated 21 February 1972, 16 October 1974, 13 February 1995 and 22 May 1997, April 2008, 20 June 2006 and 1 March 2012 as detailed in Section 3.3.4 of the EIS, and any existing or continuing use rights for the site, in accordance with the EP&A Regulation.	Non- Compliant (Low Risk) Boral sought an alternative timeframe from the Planning Secretary to surrender consents and existing or continuing use rights. Status: Extension granted until 30 December 2025
D17	Before the commencement of development under this consent until the completion of all rehabilitation required under this consent, the Applicant must make the following information and documents (as they are obtained, approved or as otherwise stipulated within the conditions of this consent) publicly available on its website.	Non- Compliant (Low Risk) 1. Water licences made available on website or link to relevant website where water licences can be accessed. 2. EIS (see definition of EIS under heading "Definitions" in the conditions of consent) to be on website or link to relevant website where EIS can be accessed. 3. All minutes of CCC meetings made available on website or link to the Peppertree Quarry website for combined minutes. Status: Complete

A total of 8 opportunities to promote improvement in terms of regulatory compliance and environmental performance were included in the audit report for consideration and action. Table 10.2 outlines the status of the improvement opportunities including the two non-compliances as per table 10.1.

Table 10.2- Improvement Opportunities and Action, inclusive of non-compliances and actions

			Response	Due Date	
BML01/24	period to align with the Annual Review period.		requesting the alignment of the 2026 audit with the Annual		Auditing alignment with financial year approved by DPHI. Next reporting period ends 30/6/2027
BML02/24	Surrender of existing consents or	, ,	An alternative time frame will be discussed with DPHI as to the surrender of the consents and existing use rights.		Extension to the 30 th Dec 2025 granted by DPHI on the 20 th August 2025
BML03/24	references in	Correct "Error" references throughout the management plan.	The Management plans are to be reviewed in line with the findings of the IEA. The changes as identified will be corrected and the plan reissued to DPHI for approval.	30/7/2024	Completed
BML04/24			Maximum truck movements per day will be included in the 2023-2024 Annual review.		Amended in FY24 Annual Review and all going forward.
BML05/24	Management Plan missing appendices.	included in the TMP on	The Traffic management plan will be reissued to the website with appendices attached.	30/6/2024	Completed
BML06/24	Management Strategy missing	already on the website and	Appendices on the website will be reviewed and notes applied as required by the audit.	30/6/2024	Completed

	I				
BML07/24	of Strategies, Plans and Programs updates and approval.	document control table to include review of document, the trigger for the review, dates of review and whether Planning Secretary approval has been received or is not required. Date of Planning Secretary approval should also be included	The document control table will be reviewed in the plans and updated. It may not be possible to add the date of The Panning Secretary's approval as this then amends the document from the version submitted to the DPHI. However, the letter of approval will be placed on the website corresponding with the relevant plan.	30/7/2024	Completed
BML08/24	to missing specified information on		Updates to the website to be made in line with the Improvement Opportunity	30/6/2024	Completed
		2. EIS (see definition of EIS under heading "Definitions" in the conditions of consent) to be on website or link to relevant website where EIS can be accessed.			
		3. All minutes of CCC meetings made available on website or link to the Peppertree Quarry website for combined minutes.			

The next independent audit, as per Condition D13, will be undertaken in July 2026.

11 INCIDENTS AND NON-COMPLIANCES

SSD 7009

A19: Surrender Consents dated 21 February 1972 to 16 October 1974

Under SSD 7009 condition A19 "Within 12 months of the date of commencement of development under this consent, or other timeframe agreed by the Planning Secretary, the Applicant must surrender the existing development consents dated 21 February 1972, 16 October 1974, 13 February 1995 and 22 May 1997, April 2008, 20 June 2006 and 1 March 2012 as detailed in Section 3.3.4 of the EIS, and any existing or continuing use rights for the site, in accordance with the EP&A Regulation". An extension to the 30th Dec 2025 was granted by DPHI on the 20th August 2025.

B88: Daily truck limit exceeded

Under SSD 7009 section B88 a maximum of 75 laden trucks per day are allowed to leave site. Two occurrences of exceedances of the 75 truck per day limit were recorded, on the 4th September 2024 13 truck movements and 9th September 2024 – 7 truck movements were above the daily limit. The exceedances were reported to DPHI and the resulting action was to ensure all records were kept of truck movements from site. A review of the Traffic Management Plan was triggered and completed.

B56: The Applicant must implement the Biodiversity Management Plan as approved by the Planning Secretary

The Biodiversity Management Plan (BDMP) states that one Rapid Visual Assessment is required each spring in all remnant vegetation and rehabilitation areas. Since the date of the BDMP in October 2022 no RVA's have been made at the specific location of the Closed Catchment. Boral is working with an Ecologist to prepare a Closed Catchment Vegetation Management Plan for the Closed Catchment area, while a review of the RVA process will be undertaken to make clear requirements to include water bodies within the mine lease boundary.

Environmental Protection License 944

M2.2: Point 16, 17 and 18 to be monitored monthly

The November 2024 dust deposition bottle samples for Point 16, 17 and 18 were unavailable due to a staff change in courier and process error. Internal systems have been put in place to prevent this happening again. The non-compliance was reported in the Annual Return which wassubmitted to the EPA in March 2025.

L3.2: Point 1 sample results are to remain within the set criteria of micrograms per cubic meter for a 24-hour period

Point 1 in a 24-hour period the 100-percentile concentration limit is 25 micrograms per cubic meter for PM2.5.

A PM2.5 exceedance of 59.33 micrograms over the 24 hour criteria dated 17th December 2024 was reported to DPHI on the 20th February.

It was determined that the location of the sampler can be improved to meet the Air Quality Management Plan requirement of being located on the boundary of the project, and an alternative location has been discussed with the EPA. Relocation is progressing.

L3.2: Point 1 sample results are to remain within the set criteria of micrograms per cubic meter for a 24-hour period

Point 1 in a 24-hour period the 100-percentile concentration limit for PM10 is 50 micrograms per cubic meter, and 25 micrograms per cubic meter for PM2.5.

PM2.5 and PM10 exceedance of 13.07 and 2.53 micrograms respectively dated 10th April 2025 was reported to DPHI on the 20th May 2025. It was determined that the location of the sampler can be improved to meet the

Air Quality Management Plan requirement of being located on the boundary of the project, and an alternative location has been discussed with the EPA. Relocation is progressing.

No other incidents or non-compliances occurred in the reporting period.

12 ACTIVITIES PROPOSED FOR NEXT PERIOD

Activities for the coming reporting period primarily centre around the implementation of the various management plans associated with the SSD post-approval process.

11.1 Current Approved Management Plans and Strategies

The SSDA development consent requires a number of plans and strategies which were prepared during 2022. The following plans which were approved include:

- Noise Management Plan.
- Blast Management Plan.
- Air Quality and Greenhouse Gas Management Plan.
- Water Management Plan (including Site Water Balance, Erosion and Sediment Control Plan, Surface Water Management Plan, Marulan Creek Dam Management Plan, and Groundwater Management Plan).
- Biodiversity Management Plan.
- Aboriginal Cultural Heritage Management Plan.
- Historic Heritage Management Plan.
- Bushfire Management Plan
- Rehabilitation Strategy.
- Rehabilitation Management Plan.
- Traffic Management Plan.
- Environmental Management Strategy.

These plans have been prepared in accordance with relevant guidelines and in consultation with DPE and relevant government agencies. The plans provide details on statutory requirements, relevant limits or performance criteria and performance indicators, as well as a description of the measures to be implemented to comply with these requirements. The plans also detail monitoring programs to assess the environmental performance of the development and the effectiveness of the management measures. Protocols for managing and reporting any incidents, non-compliance or exceedances of impact assessment criteria are also included.

All of the above management plans were reviewed from October to December 2024 and no changes were made.

During the 2025-26 reporting period, the various management strategies and plans will continue to be implemented.

11.2 SSD7009 Post Approval Requirements

Actions remaining to be undertaken include:

- Active protection of nominated Aboriginal site scheduled for avoidance in proximity to development footprint.
- Preclearance surveys to be undertaken prior to clearing any vegetation within the approved disturbance area.
- Update site water balance.

11.3 Rehabilitation Activities Planned for 2024-25

The rehabilitation activities planned for next three years (2025-2028) will include:

- Western, Southern and Northern Emplacement areas per the stage plan footprint in the Rehabilitation Management Plan.
- Backfilling the south pit void to levels above the rim of current topography;
- The WOBE will be expanded towards the current location of Marulan South Road with an outer "Noise Wall" being constructed first, followed by dumping inside the shell;
- Central Dam, W2 and the pipe to connect them to start construction
- Total of 10 hectares prepared for active rehabilitation over 3 years
- · Use of soil ameliorants to prepare soil for seeding;
- On benches prepared for rehabilitation, apply salvaged topsoil from stripped areas, cross rip and water to allow seedbank to establish.
- If no groundcover is established from the natural topsoil, hydro-mulching with Flexterra FGM with ryegrass, couch and clover seed as well as a native seed mix; and
- Planting of tubestock to target specific species required for the Plant Community Type.
- Monitoring and maintenance Bryce's Gully including weed control measures when required;
- Ongoing monitoring and remediation of the Barbers Creek Emplacement as required;

11.4 Mining Operations

Mining operations will continue in accordance with SSD7009 which is likely to involve:

- pre-stripping of topsoil in approved mine expansion and emplacement areas;
- · overburden removal and emplacement;
- · drill and blast activities;
- extraction of limestone and clay shale;
- :
- hauling of overburden and extracted resource;
- crushing, screening and stockpiling operations;
- product dispatch predominantly by rail but also by road;
- maintenance and rehabilitation activities; and
- environmental and rehabilitation monitoring.

Figures

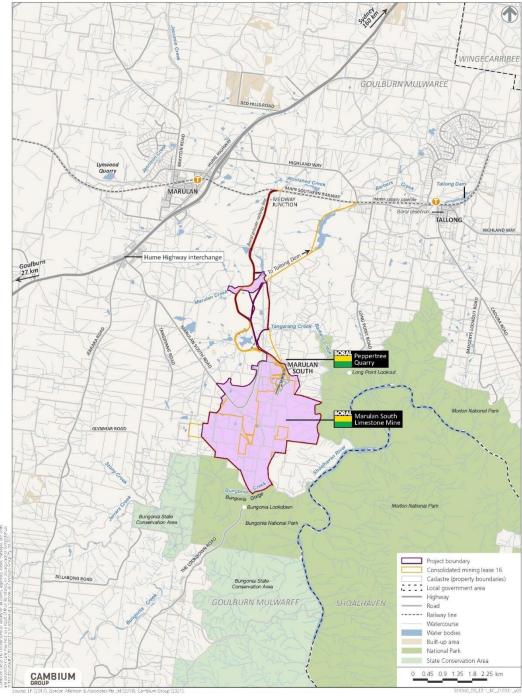


Figure 1 – Regional Location

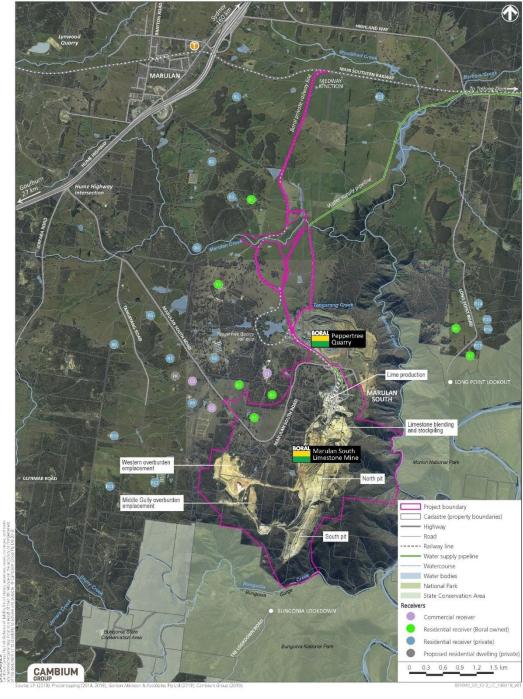


Figure 2 – Local Context

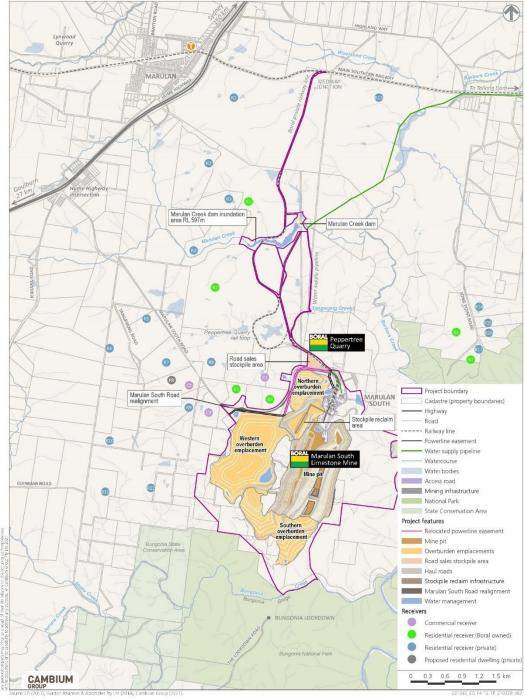


Figure 3 – Approved Project

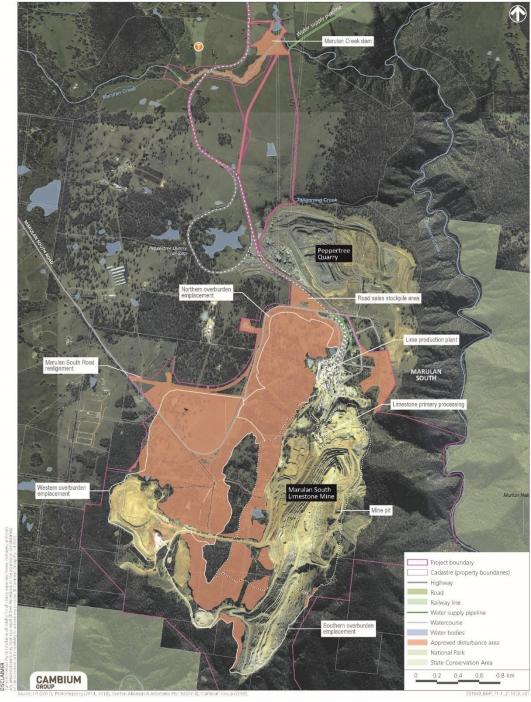


Figure 4 – Approved Disturbance Area

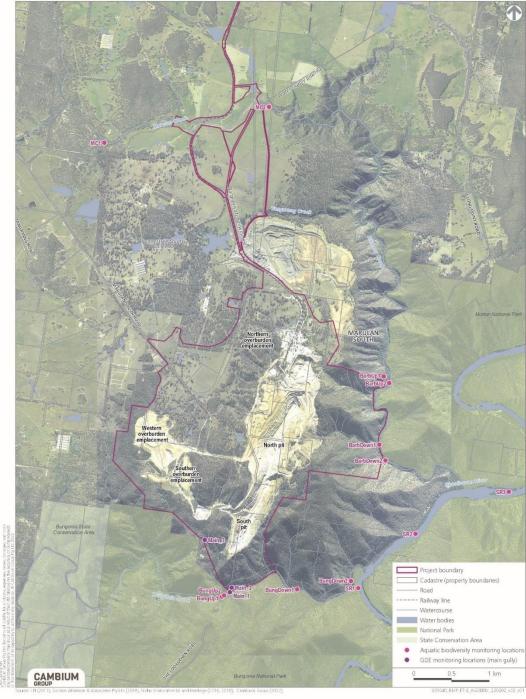


Figure 5 – Monitoring Sites

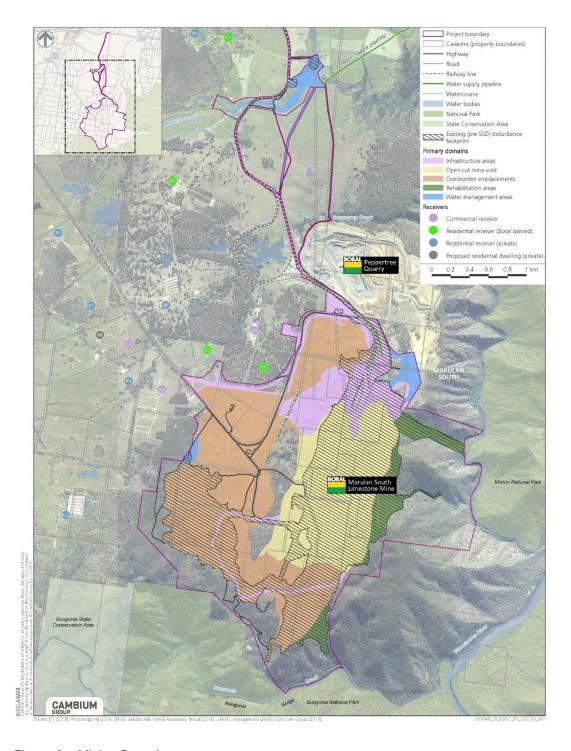


Figure 6 - Mining Domains

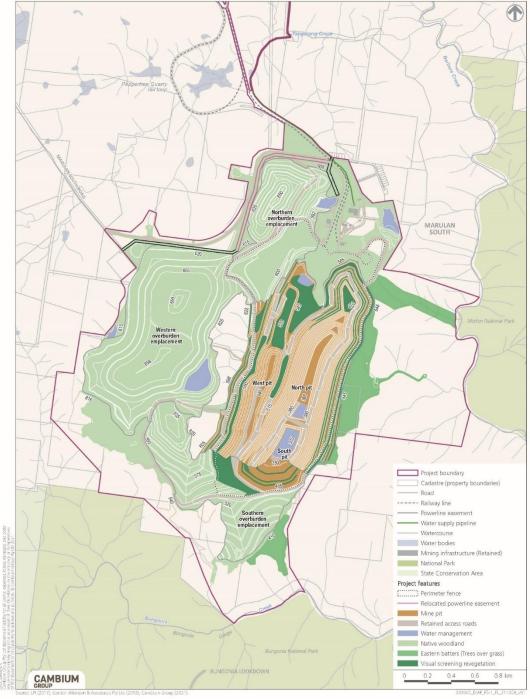


Figure 7 - Final Rehabilitation Plan

APPENDIX A

EPA Licence

Licence - 944

<u>Licence Details</u>	
Number:	944
Anniversary Date:	28-January

Licensee

BORAL CEMENT LIMITED

PO BOX 6041

NORTH RYDE NSW 2113

Premises

MARULAN SOUTH LIMESTONE MINE AND LIME PLANT

HUME STREET

MARULAN SOUTH NSW 2579

Scheduled Activity

Cement or lime works

Mining for minerals

Fee Based Activity	<u>Scale</u>
Cement or lime production	> 100000-250000 T annual production capacity
Mining for minerals	> 2000000-5000000 T annual production capacity

Contact Us
NSW EPA
6 Parramatta Square
10 Darcy Street
PARRAMATTA NSW 2150
Phone: 131 555
Email: info@epa.nsw.gov.au
Locked Bag 5022
PARRAMATTA NSW 2124

Licence - 944

	•••	
INFC	ORMATION ABOUT THIS LICENCE	4
Dic	ctionary	4
Re	sponsibilities of licensee	4
Vai	riation of licence conditions	4
Du	ration of licence	4
Lic	ence review	4
Fee	es and annual return to be sent to the EPA	4
Tra	ansfer of licence	5
Pul	blic register and access to monitoring data	5
1	ADMINISTRATIVE CONDITIONS	6
A1	What the licence authorises and regulates	6
A2		
A3		
2	DISCHARGES TO AIR AND WATER AND APPLICATIONS TO LAND	
P1	Location of monitoring/discharge points and areas	7
3	LIMIT CONDITIONS	
L1	Pollution of waters	8
L2	Load limits	8
L3	Concentration limits	9
L4	Noise limits	10
L5	Blasting	11
4	OPERATING CONDITIONS	 . 12
01	Activities must be carried out in a competent manner	12
02	Maintenance of plant and equipment	1 2
О3	B Dust	12
5	MONITORING AND RECORDING CONDITIONS	13
M1	Monitoring records	13
M2	Requirement to monitor concentration of pollutants discharged	13
МЗ	3 Testing methods - concentration limits	14
M4	Testing methods - load limits	15
M5	5 Weather monitoring	15
M6	Recording of pollution complaints	15
M7	7 Telephone complaints line	16
6	REPORTING CONDITIONS	 . 16
R1	Annual return documents	16

Licenc	3 - 944	
R2	Notification of environmental harm	47
R3	Written report	18
7 (GENERAL CONDITIONS	18
G1	Copy of licence kept at the premises or plant	18
DICT	ONARY	19
Gen	eral Dictionary	19

Licence - 944

Information about this licence

Dictionary

A definition of terms used in the licence can be found in the dictionary at the end of this licence.

Responsibilities of licensee

Separate to the requirements of this licence, general obligations of licensees are set out in the Protection of the Environment Operations Act 1997 ("the Act") and the Regulations made under the Act. These include obligations to:

- ensure persons associated with you comply with this licence, as set out in section 64 of the Act;
- control the pollution of waters and the pollution of air (see for example sections 120 132 of the Act);
- report incidents causing or threatening material environmental harm to the environment, as set out in Part 5.7 of the Act.

Variation of licence conditions

The licence holder can apply to vary the conditions of this licence. An application form for this purpose is available from the EPA.

The EPA may also vary the conditions of the licence at any time by written notice without an application being made.

Where a licence has been granted in relation to development which was assessed under the Environmental Planning and Assessment Act 1979 in accordance with the procedures applying to integrated development, the EPA may not impose conditions which are inconsistent with the development consent conditions until the licence is first reviewed under Part 3.6 of the Act.

Duration of licence

This licence will remain in force until the licence is surrendered by the licence holder or until it is suspended or revoked by the EPA or the Minister. A licence may only be surrendered with the written approval of the EPA.

Licence review

The Act requires that the EPA review your licence at least every 5 years after the issue of the licence, as set out in Part 3.6 and Schedule 5 of the Act. You will receive advance notice of the licence review.

Fees and annual return to be sent to the EPA

For each licence fee period you must pay:

- an administrative fee; and
- a load-based fee (if applicable).

Licence - 944

The EPA publication "A Guide to Licensing" contains information about how to calculate your licence fees. The licence requires that an Annual Return, comprising a Statement of Compliance and a summary of any monitoring required by the licence (including the recording of complaints), be submitted to the EPA. The Annual Return must be submitted within 60 days after the end of each reporting period. See condition R1 regarding the Annual Return reporting requirements.

Usually the licence fee period is the same as the reporting period.

Transfer of licence

The licence holder can apply to transfer the licence to another person. An application form for this purpose is available from the EPA.

Public register and access to monitoring data

Part 9.5 of the Act requires the EPA to keep a public register of details and decisions of the EPA in relation to, for example:

- licence applications;
- licence conditions and variations;
- statements of compliance;
- load based licensing information; and
- load reduction agreements.

Under s320 of the Act application can be made to the EPA for access to monitoring data which has been submitted to the EPA by licensees.

This licence is issued to:

BORAL CEMENT LIMITED
PO BOX 6041
NORTH RYDE NSW 2113

subject to the conditions which follow.

Licence - 944

1 Administrative Conditions

A1 What the licence authorises and regulates

A1.1 This licence authorises the carrying out of the scheduled activities listed below at the premises specified in A2. The activities are listed according to their scheduled activity classification, fee-based activity classification and the scale of the operation.

Unless otherwise further restricted by a condition of this licence, the scale at which the activity is carried out must not exceed the maximum scale specified in this condition.

Scheduled Activity	Fee Based Activity	Scale
Cement or lime works	Cement or lime production	> 100000 - 250000 T annual production capacity
Mining for minerals	Mining for minerals	> 2000000 - 5000000 T annual production capacity

A2 Premises or plant to which this licence applies

A2.1 The licence applies to the following premises:

Premises Details		
MARULAN SOUTH LIMESTONE MINE AND LIME PLANT		
HUME STREET		
MARULAN SOUTH		
NSW 2579		
SHIRE OF MULWAREE, PARISH OF MARULAN, COUNTY OF ARGYLE		

A2.2 Additional Premises Description:

Lot 1 DP 23030; Lot 130 A/C 15310-179; Lot 186 A/C 15310-179; Lot 189 A/C 15310-179; Lot 193 A/C 15310-179; Lot 4 DP 216767; Lot 82 DP 750029; Lot 114 DP 750029; Lot 115 DP 750029; Lot 131 DP 750029; Lot 132 DP 750029; Lot 154 DP 750029; Lot 156 DP 750029; Lot 165 DP 750029; Lot 197 DP 750029; Lot 6 DP 111641; Lot 7 DP 111641; Lot 1 DP 527500; Lot 2 DP 527500; Lot 3 DP 527501; Lot 1701 DP 610507; Lot 1702 DP 610507; Lot 1 DP 617992; Lot 3 DP 617992; Lot 14 DP 111641; Lot 15 DP 111641; Lot 16 DP 111641; Lot 9 DP 111645; Lot 1 DP 371167; Lot 113 DP 830458; Lot 1 DP 860561; Lot 2 DP 860561; Lot A DP 368922; Lot B DP 368922; Lot 2 DP 536838; Lot 22 DP 867667; Lot 1 DP 1124189; Lot 2 DP 1124189; Lot 12 DP 881240; Lot 23 DP 867667; Lot 3 DP 203290; Lot 4 DP 203290; Lot 282 DP 750029; Lot 193 DP 750029; Lot 186 DP 750029; Lot 179 DP 750029; Lot 83 DP 750029; Lot 155 DP 750029; Lot 87 DP 750029; Lot 98 DP 750029; Lot 187 DP 750029; Lot 191 DP 750029; Lot 7303 DP 1149129; Lot 7301 DP 1149129; Lot 7302 DP 1149129; Lot 7300 DP 1149129; Lot 24 DP 867667; Lot 1 DP 261615; Lot 1 DP 106569; Lot 2 DP 106569; Lot 100 DP 1064794; Lot 12 DP 570616; Lot 111 DP 830458; Lot 114 DP 830458; Lot 112 DP 830458; Lot 113 DP 830458; Lot 2 DP 1186554;

Licence - 944

Lot 1 DP 132244; Lot 2 DP 132244; Lot 3 DP 106569; Lot 4 DP 106569 and Lot 21 DP 657523.

A2.3 The premises is identified by the most recently approved premises map held on EPA electronic file as DOC23/6902-2.

A3 Information supplied to the EPA

A3.1 Works and activities must be carried out in accordance with the proposal contained in the licence application, except as expressly provided by a condition of this licence.

In this condition the reference to "the licence application" includes a reference to:

a) the applications for any licences (including former pollution control approvals) which this licence replaces under the Protection of the Environment Operations (Savings and Transitional) Regulation 1998; andb) the licence information form provided by the licensee to the EPA to assist the EPA in connection with the issuing of this licence.

2 Discharges to Air and Water and Applications to Land

P1 Location of monitoring/discharge points and areas

P1.1 The following points referred to in the table below are identified in this licence for the purposes of monitoring and/or the setting of limits for the emission of pollutants to the air from the point.

Air

EPA identi- fication no.	Type of Monitoring Point	Type of Discharge Point	Location Description
1	Dust monitoring		High Volume Air Sampler labelled as "EPL1" on map titled "230109 EPL944 Premise Map" (DOC23/6902-2)
11	Discharge to air; Air emissions monitoring	Discharge to air; Air emissions monitoring	Kiln Stack labelled as "EPL11" on map titled "230109 EPL944 Premise Map" (DOC23/6902-2)
12	Discharge to air; Air emissions monitoring	Discharge to air; Air emissions monitoring	Lime Hydration Plant Stack labelled as "EPL12" on map titled "230109 EPL944 Premise Map" (DOC23/6902-2)
16	Dust Monitoring		Dust Deposition Gauge located within the premises labelled as "EPL16" on map titled "230109 EPL944 Premise Map" (DOC23/6902-2)
17	Dust monitoring		Dust deposition gauge at Sub station. Dust monitoring station located within the premises labelled as "EPL17" on map titled "230109 EPL944 Premise Map" (DOC23/6902-2)

Licence - 944

18	Dust monitoring	Dust deposition gauge at Freddy's hill. Dust monitoring station located within the premises labelled as "EPL18" on map titled "230109 EPL944 Premise Map" (DOC23/6902-2)
21	Weather monitoring	Weather monitoring station located within the premises labelled as "EPL21" on map titled "230109 EPL944 Premise Map" (DOC23/6902-2)

P1.2 The following points referred to in the table are identified in this licence for the purposes of the monitoring and/or the setting of limits for discharges of pollutants to water from the point.

Water and land

EPA Identi- fication no.	Type of Monitoring Point	Type of Discharge Point	Location Description
13	Groundwater Monitoring		Groundwater Monitoring Point labelled as "MW05" on map entitled 'EPL 944 Groundwater Monitoring Point Location Change- December 2020" (DOC20/1014984)

3 Limit Conditions

L1 Pollution of waters

L1.1 Except as may be expressly provided in any other condition of this licence, the licensee must comply with section 120 of the Protection of the Environment Operations Act 1997.

L2 Load limits

- L2.1 The actual load of an assessable pollutant discharged from the premises during the reporting period must not exceed the load limit specified for the assessable pollutant in the table below.
- L2.2 The actual load of an assessable pollutant must be calculated in accordance with the relevant load calculation protocol.

Assessable Pollutant	Load limit (kg)
Coarse Particulates (Air)	15050.00
Fine Particulates (Air)	14050.00
Lead (Air)	6.00
Mercury (Air)	2.00
Nitrogen Oxides (Air)	110000.00

Licence - 944

Sulfur Oxides (Air) 3000.00

Note: An assessable pollutant is a pollutant which affects the licence fee payable for the licence.

- L2.3 Course particulates, fine particulates, nitrogen oxides and sulfur oxides load limits are to be reviewed on 4 February 2028.
- L2.4 Lead and Mercury load limits were derived from 5 years of annual returns and discussion with the licensee. Load limits for Lead and Mercury are to be reviewed in 2025.

L3 Concentration limits

- L3.1 For each monitoring/discharge point or utilisation area specified in the table/s below (by a point number), the concentration of a pollutant discharged at that point, or applied to that area, must not exceed the concentration limits specified for that pollutant in the table.
- L3.2 Air Concentration Limits

POINT 1

Pollutant	Units of measure	100 percentile concentration limit	Reference conditions	Oxygen correction	Averaging period
PM10	micrograms per cubic metre	25(Annual) 50(24hr)			
PM2.5	micrograms per cubic metre	8(Annual) 25(24hr)			
Total suspended particles	micrograms per cubic metre	90			Annual

POINT 11

Pollutant	Units of measure	100 percentile concentration limit	Reference conditions	Oxygen correction	Averaging period
Nitrogen Oxides	milligrams per cubic metre	2000			

POINT 12

Pollutant	Units of measure	100 percentile concentration limit	Reference conditions	Oxygen correction	Averaging period
Solid Particles	milligrams per cubic metre	100			

Note: Point 1 sampling limits for PM10 are:

- 25 micrograms per meter squared over an averaging Annual period; and
- 50 micrograms per meter squared over an averaging 24 hour period.

Note: Point 1 sampling limits for PM2.5 are:

Licence - 944

- 8 micrograms per meter squared over an averaging Annual period; and
- 25 micrograms per meter squared over an averaging 24 hour period.

L4 Noise limits

L4.1 Noise generated at the premises must not exceed the noise limits at times and locations specified in the table below. The locations referred to in the table below are indicated by "Marulan South Limestone Mine Continued Operations - Environmental Impacts Statement prepared for Boral Cement March 2019 - Appendix F Noise and Blasting Assessment - Figure 5.1".

Assessment Location	Day	Evening	Night	Night
-	LAeq(15min)	LAeq(15min)	LAeq(15min)	LAF(max)
R9	40	36	36	52
Other privately owned residences	40	35	35	52

- L4.2 For the purpose of Condition L4.1:
 - a) Day means the period from 7am to 6pm Monday to Saturday and the period from 8am to 6pm Sunday and public holidays.
 - b) Evening means the period from 6pm to 10pm.
 - c) Night means the period from 10pm to 7am Monday to Saturday and the period from 10pm to 8am Sunday and public holidays.
- L4.3 a) The noise limits set out in Condition L4.1 apply under the following meteorological conditions listed in the table below.
 - b) For those meteorological condition not referred to in condition L4.3(a), the noise limits that apply are the noise limits in Condition L4.1 plus 5dB.

Assessment Period	Meteorological Conditions
Day	Stability Categories A, B, C and D with wind speeds up to and including 0.5m/s at 10m above ground level
Evening	Stability Categories A, B, C and D with wind speeds up to and including 0.5m/s at 10m above ground level
Night	Stability Categories A, B, C and D with wind speeds up to and including 0.5m/s at 10m above ground level

- L4.4 For the purpose of condition L4.3:
 - a) The meteorological conditions are to be determined from meteorological data obtained from the meteorological weather station identified as 'EPL21' on the most recently approved premises map held on EPA electronic file as DOC23/6902-2.
 - b) Stability category adopted by the licensee is 'Use of sigma thete data' in accordance with the Noise Policy for Industry (NSW EPA, 2017).
- L4.5 To assess compliance:
 - a) with the LAeq(15minute) or the LAmax noise limits in condition L4.1 and L4.3, the noise measurement

Licence - 944

equipment must be located:

- (i) approximately on the property boundary, where any residence is situated 30 meters or less from the property boundary closest to licensed premises; or where applicable;
- (ii) in an area within 30 meters of a residence façade, but not closer than 3 meters where any residence on the property is situated more than 30 meters from the property boundary closest to the licensed premises; or, where applicable;
 - (iii) in an area within 50 meters of the boundary of the premises; or, where applicable;
 - (iv) at any other location identified in Condition L4.1.
- b) with the LAeq(15 minute) or the LAmax noise limits in condition L4.1 and L4.3, the noise measurement equipment must be located:
 - (i) at the reasonably most affected point at a location where there is no residence at the location; or,
 - (ii) at the reasonably most affected point within an area at a location prescribed by condition L4.5(a).
- L4.6 A non-compliance of condition L4.1 and L4.3 will still occur where noise generated from the premises is measured in excess of the noise limit at a point other than the reasonably most effected point at the locations referred to in condition L4.5(a) or L4.5(b).
- Note: Note to L4.5 and L4.6: The reasonably most affected point is a point at a location or within an area at a location experiencing or expected to experience the highest noise generated from the premises.
- L4.7 For the purpose of determining the noise generated from the premises, the modifying factor corrections in Table C1 in Fact Sheet C of the *Noise Policy for Industry* (NSW EPA, 2017) should be applied, as appropriate, to the noise measurement by the noise monitoring equipment.
- L4.8 Noise measurement must not be undertaken where rain or wind speed at microphone level will affect the acquisition of valid measurements.
- L4.9 Where it can be demonstrated that direct measurement of noise from the premises is impractical at location/s nominated in L4.1, the EPA may accept alternative means of determining compliance. See Chapter 7 of the *Noise Policy for Industry*.

Note: Definitions

For the purpose of this license the following definitions apply:

- Noise 'sound pressure levels' for the purposes of conditions L4.1 to L4.9.
- *LAeq(15 minute)* the value of the A-weighted sound pressure level of a continuous steady sound that, over 15 minute time interval, has the same mean square sound pressure level as a sound under consideration with a level that varies with time (AS1055.1-1997).
- *LAFmax* the maximum sound pressure level of an event measured with a sound level meter satisfying AS IEC 61672.1-2004 set to 'A' frequency weighting and fast time weighting.

L5 Blasting

- L5.1 The airblast overpressure level from blasting operations at the premises must not exceed 120dB (Lin Peak) at any time at any noise sensitive locations. Error margins associated with any monitoring equipment used to measure this are not to be taken into account in determining whether or not the limit has been exceeded.
- L5.2 The airblast overpressure level from blasting operations at the licensed premises must not exceed 120dB (Lin Peak) at any one time at any noise sensitive locations. Error margins associated with any monitoring

Licence - 944

equipment used to measure this are not to be taken into account in determining whether or not the limit has been exceeded

- L5.3 The airblast overpressure level from blasting operations at the licensed premises must not exceed 115dB (Lin Peak) at any noise sensitive locations for more than five per cent of the total number of blasts over each reporting period. Error margins associated with any monitoring equipment used to measure this are not to be taken into account in determining whether or not the limit has been exceeded.
- L5.4 Ground vibration peak particle velocity from the blasting operations at the licensed premises must not exceed 10mm/sec at any time at any noise sensitive locations. Error margins associated with any monitoring equipment used to measure this are not to be taken into account in determining whether or not the limit has been exceeded.
- L5.5 Ground vibration peak particle velocity from the blasting operations at the licensed premises must not exceed 5mm/sec at any time at any noise sensitive locations for more than five per cent of the total number of blasts over each reporting period. Error margins associated with any monitoring equipment used to measure this are not to be taken into account in determining whether or not the limit has been exceeded.
- L5.6 Blasting at the licensed premises may only take place between 9:00am-5:00pm Monday to Friday. Blasting is not permitted on weekends or public holidays.
- L5.7 Blasting outside of the hours specified in L5.6 can only take place with the written approval of the EPA.
- L5.8 The airblast overpressure and ground vibration levels in conditions L5.1 to L5.4 do not apply at noise sensitive locations that are owned by the licensee or subject to a private agreement, relating to airblast overpressure and ground vibration levels, between the licensee and the land owner.

4 Operating Conditions

O1 Activities must be carried out in a competent manner

O1.1 Licensed activities must be carried out in a competent manner.

This includes:

- a) the processing, handling, movement and storage of materials and substances used to carry out the activity; and
- b) the treatment, storage, processing, reprocessing, transport and disposal of waste generated by the activity.

O2 Maintenance of plant and equipment

- O2.1 All plant and equipment installed at the premises or used in connection with the licensed activity:
 - a) must be maintained in a proper and efficient condition; and
 - b) must be operated in a proper and efficient manner.

O3 Dust

O3.1 All operations and activities occurring at the premises must be carried out in a manner that will prevent and or

Licence - 944

minimise the emission of air pollutants, including dust, from the premises.

O3.2 Trucks transporting materials from the premises must be covered as soon as practicable after loading prior to leaving the premises.

5 Monitoring and Recording Conditions

M1 Monitoring records

- M1.1 The results of any monitoring required to be conducted by this licence or a load calculation protocol must be recorded and retained as set out in this condition.
- M1.2 All records required to be kept by this licence must be:
 - a) in a legible form, or in a form that can readily be reduced to a legible form;
 - b) kept for at least 4 years after the monitoring or event to which they relate took place; and
 - c) produced in a legible form to any authorised officer of the EPA who asks to see them.
- M1.3 The following records must be kept in respect of any samples required to be collected for the purposes of this licence:
 - a) the date(s) on which the sample was taken;
 - b) the time(s) at which the sample was collected;
 - c) the point at which the sample was taken; and
 - d) the name of the person who collected the sample.

M2 Requirement to monitor concentration of pollutants discharged

- M2.1 For each monitoring/discharge point or utilisation area specified below (by a point number), the licensee must monitor (by sampling and obtaining results by analysis) the concentration of each pollutant specified in Column 1. The licensee must use the sampling method, units of measure, and sample at the frequency, specified opposite in the other columns:
- M2.2 Air Monitoring Requirements

POINT 1

Pollutant	Units of measure	Frequency	Sampling Method
PM10	milligrams per cubic metre	Special Frequency 2	AM-18

POINT 11

Pollutant	Units of measure	Frequency	Sampling Method
Nitrogen Oxides	grams per cubic metre	Yearly	TM-11
Solid Particles	milligrams per cubic metre	Yearly	TM-15

Licence - 944

POINT 12

Pollutant	Units of measure	Frequency	Sampling Method
Solid Particles	milligrams per cubic metre	Yearly	TM-15

POINT 16

Pollutant	Units of measure	Frequency	Sampling Method
Particulates - Deposited Matter	grams per square metre per month	Monthly	AM-19

POINT 17

Pollutant	Units of measure	Frequency	Sampling Method
Particulates - Deposited Matter	grams per square metre per month	Monthly	AM-19

POINT 18

Pollutant	Units of measure	Frequency	Sampling Method
Particulates - Deposited Matter	grams per square metre per month	Monthly	AM-19

Note: For the purposes of the table(s) above:

Special Frequency 2 means the collection of samples on a one day in six cycle using HVAS fitted with size selective inlet for PM10.

M2.3 Water and/ or Land Monitoring Requirements

POINT 13

Pollutant	Units of measure	Frequency	Sampling Method
Oil and Grease	milligrams per litre	Quarterly	Grab sample
Total suspended solids	milligrams per litre	Quarterly	Grab sample

M3 Testing methods - concentration limits

M3.1 Monitoring for the concentration of a pollutant emitted to the air required to be conducted by this licence must

Licence - 944

be done in accordance with:

- a) any methodology which is required by or under the Act to be used for the testing of the concentration of the pollutant; or
- b) if no such requirement is imposed by or under the Act, any methodology which a condition of this licence requires to be used for that testing; or
- c) if no such requirement is imposed by or under the Act or by a condition of this licence, any methodology approved in writing by the EPA for the purposes of that testing prior to the testing taking place.
- M3.2 Subject to any express provision to the contrary in this licence, monitoring for the concentration of a pollutant discharged to waters or applied to a utilisation area must be done in accordance with the Approved Methods Publication unless another method has been approved by the EPA in writing before any tests are conducted.

Note: The *Protection of the Environment Operations (Clean Air) Regulation 2022* requires testing for certain purposes to be conducted in accordance with test methods contained in the publication "Approved Methods for the Sampling and Analysis of Air Pollutants in NSW".

M4 Testing methods - load limits

Note: Division 4 of the *Protection of the Environment Operations (General) Regulation 2022* requires that monitoring of actual loads of assessable pollutants listed in L2.2 must be carried out in accordance with the relevant load calculation protocol set out for the fee-based activity classification listed in the Administrative Conditions of this licence.

M5 Weather monitoring

- M5.1 The meteorological weather station identified in Condition L4.4(a) must be maintained so as to be capable of continually monitoring the parameters specified in Condition M5.2.
- M5.2 For each monitoring point specified in the table below the licensee must monitor (by sampling and obtaining results by analysis) the parameters specified in Column 1. The licensee must use the sampling method, units of measure, averaging period and sample at the frequency, specified opposite in the other columns.

Parameter	Units of measure	Frequency	Averaging period	Sampling Method
Air temperature	°C	Continuous	1 hour	AM-4
Wind direction	0	Continuous	15 minute	AM-2 and AM-4
Wind speed	m's	Continuous	15 minute	AM-2 and AM-4
Sigma theta	o	Continuous	15 minute	AM-2 and AM-4
Rainfall	mm	Continuous	15 minute	AM-4
Relative humidity	%	Continuous	1 hour	AM-4

M6 Recording of pollution complaints

Licence - 944

- M6.1 The licensee must keep a legible record of all complaints made to the licensee or any employee or agent of the licensee in relation to pollution arising from any activity to which this licence applies.
- M6.2 The record must include details of the following:
 - a) the date and time of the complaint:
 - b) the method by which the complaint was made;
 - c) any personal details of the complainant which were provided by the complainant or, if no such details were provided, a note to that effect;
 - d) the nature of the complaint;
 - e) the action taken by the licensee in relation to the complaint, including any follow-up contact with the complainant; and
 - f) if no action was taken by the licensee, the reasons why no action was taken.
- M6.3 The record of a complaint must be kept for at least 4 years after the complaint was made.
- M6.4 The record must be produced to any authorised officer of the EPA who asks to see them.

M7 Telephone complaints line

- M7.1 The licensee must operate during its operating hours a telephone complaints line for the purpose of receiving any complaints from members of the public in relation to activities conducted at the premises or by the vehicle or mobile plant, unless otherwise specified in the licence.
- M7.2 The licensee must notify the public of the complaints line telephone number and the fact that it is a complaints line so that the impacted community knows how to make a complaint.
- M7.3 The preceding two conditions do not apply until 3 months after: the date of the issue of this licence.

6 Reporting Conditions

R1 Annual return documents

- R1.1 The licensee must complete and supply to the EPA an Annual Return in the approved form comprising:
 - 1. a Statement of Compliance,
 - 2. a Monitoring and Complaints Summary,
 - 3. a Statement of Compliance Licence Conditions,
 - 4. a Statement of Compliance Load based Fee,
 - 5. a Statement of Compliance Requirement to Prepare Pollution Incident Response Management Plan,
 - 6. a Statement of Compliance Requirement to Publish Pollution Monitoring Data; and
 - 7. a Statement of Compliance Environmental Management Systems and Practices.

At the end of each reporting period, the EPA will provide to the licensee notification that the Annual Return is due.

R1.2 An Annual Return must be prepared in respect of each reporting period, except as provided below.

Licence - 944

- R1.3 Where this licence is transferred from the licensee to a new licensee:
 - a) the transferring licensee must prepare an Annual Return for the period commencing on the first day of the reporting period and ending on the date the application for the transfer of the licence to the new licensee is granted; and
 - b) the new licensee must prepare an Annual Return for the period commencing on the date the application for the transfer of the licence is granted and ending on the last day of the reporting period.
- R1.4 Where this licence is surrendered by the licensee or revoked by the EPA or Minister, the licensee must prepare an Annual Return in respect of the period commencing on the first day of the reporting period and ending on:
 - a) in relation to the surrender of a licence the date when notice in writing of approval of the surrender is given; or
 - b) in relation to the revocation of the licence the date from which notice revoking the licence operates.
- R1.5 The Annual Return for the reporting period must be supplied to the EPA via eConnect *EPA* or by registered post not later than 60 days after the end of each reporting period or in the case of a transferring licence not later than 60 days after the date the transfer was granted (the 'due date').
- R1.6 Where the licensee is unable to complete a part of the Annual Return by the due date because the licensee was unable to calculate the actual load of a pollutant due to circumstances beyond the licensee's control, the licensee must notify the EPA in writing as soon as practicable, and in any event not later than the due date. The notification must specify:
 - a) the assessable pollutants for which the actual load could not be calculated; and
 - b) the relevant circumstances that were beyond the control of the licensee.
- R1.7 The licensee must retain a copy of the Annual Return supplied to the EPA for a period of at least 4 years after the Annual Return was due to be supplied to the EPA.
- R1.8 Within the Annual Return, the Statements of Compliance must be certified and the Monitoring and Complaints Summary must be signed by:
 - a) the licence holder; or
 - b) by a person approved in writing by the EPA to sign on behalf of the licence holder.
- Note: The term "reporting period" is defined in the dictionary at the end of this licence. Do not complete the Annual Return until after the end of the reporting period.
- Note: An application to transfer a licence must be made in the approved form for this purpose.

R2 Notification of environmental harm

- R2.1 Notifications must be made by telephoning the Environment Line service on 131 555.
- R2.2 The licensee must provide written details of the notification to the EPA within 7 days of the date on which they became aware of the incident.
- Note: The licensee or its employees must notify all relevant authorities of incidents causing or threatening material harm to the environment immediately after the person becomes aware of the incident in accordance with the requirements of Part 5.7 of the Act.

Licence - 944

R3 Written report

- R3.1 Where an authorised officer of the EPA suspects on reasonable grounds that:
 - a) where this licence applies to premises, an event has occurred at the premises; or
 - b) where this licence applies to vehicles or mobile plant, an event has occurred in connection with the carrying out of the activities authorised by this licence, and the event has caused, is causing or is likely to cause material harm to the environment (whether the harm occurs on or off premises to which the licence applies), the authorised officer may request a written report of the event.
- R3.2 The licensee must make all reasonable inquiries in relation to the event and supply the report to the EPA within such time as may be specified in the request.
- R3.3 The request may require a report which includes any or all of the following information:
 - a) the cause, time and duration of the event;
 - b) the type, volume and concentration of every pollutant discharged as a result of the event;
 - c) the name, address and business hours telephone number of employees or agents of the licensee, or a specified class of them, who witnessed the event;
 - d) the name, address and business hours telephone number of every other person (of whom the licensee is aware) who witnessed the event, unless the licensee has been unable to obtain that information after making reasonable effort;
 - e) action taken by the licensee in relation to the event, including any follow-up contact with any complainants;
 - f) details of any measure taken or proposed to be taken to prevent or mitigate against a recurrence of such an event; and
 - g) any other relevant matters.
- R3.4 The EPA may make a written request for further details in relation to any of the above matters if it is not satisfied with the report provided by the licensee. The licensee must provide such further details to the EPA within the time specified in the request.

7 General Conditions

G1 Copy of licence kept at the premises or plant

- G1.1 A copy of this licence must be kept at the premises to which the licence applies.
- G1.2 The licence must be produced to any authorised officer of the EPA who asks to see it.
- G1.3 The licence must be available for inspection by any employee or agent of the licensee working at the premises.

Licence - 944

Dictionary

General Dictionary

3DGM [in relation
to a concentration
limit]

Means the three day geometric mean, which is calculated by multiplying the results of the analysis of three samples collected on consecutive days and then taking the cubed root of that amount. Where one or more of the samples is zero or below the detection limit for the analysis, then 1 or the detection limit respectively should be used in place of those samples

Act Means the Protection of the Environment Operations Act 1997

activity Means a scheduled or non-scheduled activity within the meaning of the Protection of the Environment

Operations Act 1997

actual load Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009

AM Together with a number, means an ambient air monitoring method of that number prescribed by the

Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales.

AMG Australian Map Grid

anniversary date The anniversary date is the anniversary each year of the date of issue of the licence. In the case of a

licence continued in force by the Protection of the Environment Operations Act 1997, the date of issue of the licence is the first anniversary of the date of issue or last renewal of the licence following the

commencement of the Act.

annual return Is defined in R1.1

Approved Methods Publication Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009

assessable pollutants

Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009

BOD Means biochemical oxygen demand

CEM Together with a number, means a continuous emission monitoring method of that number prescribed by

the Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales.

COD Means chemical oxygen demand

composite sample Unless otherwise specifically approved in writing by the EPA, a sample consisting of 24 individual samples

collected at hourly intervals and each having an equivalent volume.

cond. Means conductivity

environment Has the same meaning as in the Protection of the Environment Operations Act 1997

environment protection legislation Has the same meaning as in the Protection of the Environment Administration Act 1991

EPA Means Environment Protection Authority of New South Wales.

fee-based activity classification

Means the numbered short descriptions in Schedule 1 of the Protection of the Environment Operations

assification (General) Regulation 2009.

general solid waste Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act

(non-putrescible) 199

Licence - 944			
flow weighted composite sample	Means a sample whose composites are sized in proportion to the flow at each composites time of collection.		
general solid wast (putrescible)	Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environmen t Operations Act 1997		
grab sample	Means a single sample taken at a point at a single time		
hazardous waste	Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act 1997		
licensee	Means the licence holder described at the front of this licence		
load calculation protocol	Has the same meaning as in the Protection of the Environment Operations (General) Regulation 2009		
local authority	Has the same meaning as in the Protection of the Environment Operations Act 1997		
material harm	Has the same meaning as in section 147 Protection of the Environment Operations Act 1997		
MBAS	Means methylene blue active substances		
Minister	Means the Minister administering the Protection of the Environment Operations Act 1997		
mobile plant	Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act 1997		
motor vehicle	Has the same meaning as in the Protection of the Environment Operations Act 1997		
O&G	Means oil and grease		
percentile [in relation to a concentration limi of a sample]	Means that percentage [eg.50%] of the number of samples taken that must meet the concentration limit specified in the licence for that pollutant over a specified period of time. In this licence, the specified period of time is the Reporting Period unless otherwise stated in this licence.		
plant	Includes all plant within the meaning of the Protection of the Environment Operations Act 1997 as well as motor vehicles.		
pollution of waters [or water pollution			
premises	Means the premises described in condition A2.1		
public authority	Has the same meaning as in the Protection of the Environment Operations Act 1997		
regional office	Means the relevant EPA office referred to in the Contacting the EPA document accompanying this licence		
reporting period	For the purposes of this licence, the reporting period means the period of 12 months after the issue of the licence, and each subsequent period of 12 months. In the case of a licence continued in force by the Protection of the Environment Operations Act 1997, the date of issue of the licence is the first anniversary of the date of issue or last renewal of the licence following the commencement of the Act.		
restricted solid waste	Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act 1997		
scheduled activity	Means an activity listed in Schedule 1 of the Protection of the Environment Operations Act 1997		
special waste	Has the same meaning as in Part 3 of Schedule 1 of the Protection of the Environment Operations Act 1997		
T14	Total bounds of the same bounds of the same bounds of the same bounds of the same of Markey of San Hard		

Together with a number, means a test method of that number prescribed by the Approved Methods for the

Sampling and Analysis of Air Pollutants in New South Wales.

TM

Licence - 944

TSP	Means total suspended particles		
TSS	Means total suspended solids		
Type 1 substance	Means the elements antimony, arsenic, cadmium, lead or mercury or any compound containing one or more of those elements		
Type 2 substance	Means the elements beryllium, chromium, cobalt, manganese, nickel, selenium, tin or vanadium or any compound containing one or more of those elements		
utilisation area	Means any area shown as a utilisation area on a map submitted with the application for this licence		
waste	Has the same meaning as in the Protection of the Environment Operations Act 1997		
waste type	Means liquid, restricted solid waste, general solid waste (putrescible), general solid waste (non-putrescible), special waste or hazardous waste		
Wellhead	Has the same meaning as in Schedule 1 to the Protection of the Environment Operations (General) Regulation 2021.		

Ms Debbie Maddison

Environment Protection Authority

(By Delegation)

Date of this edition: 25-August-2000

came into effect on 01-Dec-2004.

Environment Protection Licence

Licence - 944

End Notes

1 Licence varied by notice 1002259, issued on 18-Oct-2000, which came into effect on 12-Nov-2000.
2 Licence varied by change to Common Name field, issued on 31-May-2001, which came into effect on 31-May-2001.
3 Licence transferred through application 140465, approved on 15-Jun-2001, which came into effect on 15-Jun-2001.
4 Licence varied by notice 1008757, issued on 27-Nov-2001, which came into effect on 22-Dec-2001.
5 Licence varied by notice 1017662, issued on 21-Jun-2002, which came into effect on 16-Jul-2002.
6 Licence varied by notice 1026529, issued on 30-Apr-2003, which came into effect on 25-May-2003.
7 Licence varied by notice 1030085, issued on 21-Aug-2003, which came into effect on 15-Sep-2003.
8 Licence varied by notice 1038040, issued on 14-Jul-2004, which came into effect on 08-Aug-2004.

10 Licence varied by notice 1044343, issued on 15-Mar-2005, which came into effect on 09-Apr-2005.

Licence varied by change to record due to LGA amalagamatio, issued on 01-Dec-2004, which

- 11 Licence varied by notice 1054428, issued on 24-Feb-2006, which came into effect on 21-Mar-2006.
- 12 Licence varied by notice 1057796, issued on 03-Apr-2006, which came into effect on 28-Apr-2006.
- 13 Licence varied by correction to DEC File number, issued on 07-Mar-2007, which came into effect on 07-Mar-2007.
- 14 Condition A1.3 Not applicable varied by notice issued on <issue date> which came into effect on <effective date>
- 15 Licence varied by notice 1095801, issued on 09-Feb-2009, which came into effect on 09-Feb-2009.
- 16 Licence varied by notice 1502865 issued on 06-Dec-2011
- 17 Licence varied by notice 1506039 issued on 29-Jun-2012
- 18 Licence varied by notice 1521469 issued on 07-Aug-2014
- 19 Licence varied by notice 1603582 issued on 24-Dec-2020
- 20 Licence varied by notice 1625174 issued on 14-Mar-2023

Licence - 944

21 Licence varied by notice 1645173 issued on 04-Feb-2025

22 Licence varied by notice 1647168 issued on 31-Mar-2025

APPENDIX B

Development Consent

Development Consent

Section 4.36 of the Environmental Planning and Assessment Act 1979

As delegate of the Minister for Planning and Public Spaces under delegation executed on 26 April 2021, I approve the Development Application referred to in Schedule 1, subject to the conditions specified in Schedule 2.

These conditions are required to:

- prevent, minimise, or offset adverse environmental impacts;
- set standards and performance measures for acceptable environmental performance;
- · require regular monitoring and reporting; and
- provide for the ongoing environmental management of the development.

Creshans

Executive Director

Energy, Resources and Industry Assessments
As delegate for the Minister for Planning and Public Spaces

Sydney 19 August 2021

SCHEDULE 1

Application Number: SSD 7009

Applicant: Boral Cement Limited

Consent Authority: Minister for Planning and Public Spaces

Site: The land defined in Appendix 1

Development: Marulan South Limestone Mine Continued Operations Project

TABLE OF CONTENTS

DEFINITIONS III

PART A	ADMINISTRATIVE CONDITIONS	ε
Obligation to	o Minimise Harm to the Environment	6
Terms of Co	onsent	6
	nsent	
	of Commencement	
	f Existing Consents or Approvals	
	Contributions to Council	
	Consultative Committee	
	Consultation	
	f Public Infrastructure	
	T ubile illitastructure	
	lequacy	
	f Plant and Equipment	
•		
Applicability	of Guidelines	Ç
Crown Land		
PART B	SPECIFIC ENVIRONMENTAL CONDITIONS	10
Noiso		10
•	and Greenhouse Gas	
•	cal Monitoring	
•	Goods	
	nagementon	
	JII	
•		
PART C	ADDITIONAL PROCEDURES	
	of Landowners/Tenants	
	of Exceedances	
independen	t Review	
PART D	ENVIRONMENTAL MANAGEMENT, REPORTING AND AUDITING	29
Environmen	tal Management	29
	Strategies, Plans and Programs	
	nd Auditing	
Access to In	formation	31
APPENDIX 1	SCHEDULE OF LAND	33
APPENDIX 2	DEVELOPMENT LAYOUT PLANS	34
APPENDIX 3	RECEIVER LOCATIONS	36
APPENDIX 4	BIODIVERSITY OFFSET STRATEGY	37
APPENDIX 5	HERITAGE ITEMS	38
APPENDIX 6	REHABILITATION PLANS	41

DEFINITIONS

Has the same meaning as the definition of the term in section 5 of the NP&W Act Aboriginal object Aboriginal place Has the same meaning as the definition of the term in section 5 of the NP&W Act

Annual Review The review required by condition D11

Applicant Boral Cement Limited, or any person carrying out any development under this consent

Approved disturbance area

The area identified as such on the Development Layout

ΔRI Average Recurrence Interval **BCA Building Code of Australia**

BC Act Biodiversity Conservation Act 2016

BCD Biodiversity & Conservation Division within the Department

BCT NSW Biodiversity Conservation Trust

Biodiversity Offset Strategy The Biodiversity Offset Strategy for the development as described in the document/s listed in

condition A2(c) and shown conceptually in Appendix 4

Blast misfire The failure of one or more holes in a blast pattern to initiate CCC Community Consultative Committee required by condition A24

Clay/Shale Includes both Clay/Shale and White Clay

Conditions of this

consent

Conditions contained in Schedule 2

All physical works to enable mining operations to be carried out, including demolition and Construction

removal of buildings or works, and erection of buildings and other infrastructure permitted by

this consent

Council Goulburn Mulwaree Council

Date of

commencement

The date notified to the Department by the Applicant under condition A17

The period from 7.00 am to 6.00 pm on Monday to Saturday, and 8.00 am to 6.00 pm on Day

Sundays and Public Holidays

Decommissioning The deconstruction or demolition and removal of works installed as part of the development

Demolition The deconstruction and removal of buildings, sheds and other structures on the site

Department NSW Department of Planning, Industry and Environment

The development described in the documents listed in condition A2(c), as modified by the **Development**

conditions of this consent

Development

Layout

The plans in Appendix 2 of this consent

DPIE Crown

Lands

EIS

Crown Lands Group within the Department

DPIE Water Water Group within the Department

CEEC Critically endangered ecological community, as defined under the EPBC Act

> The Environmental Impact Statement titled Marulan South Limestone Mine Continued Operations State Significant Development Application Environmental Impact Statement, prepared by Element Environment, dated March 2019, submitted with the application for consent for the development, including the Applicant's Response to Submissions and

> additional information provided by the Applicant dated 6 November 2019, 19 February 2020, 7 May 2020, 6 July 2020, 27 July 2020, 23 March 2021, 22 April 2021, May 2021, 18 June

2021, 6 July 2021 and 23 July 2021

Includes all aspects of the surroundings of humans, whether affecting any human as an **Environment**

individual or in his or her social groupings

EPA NSW Environment Protection Authority **EP&A Act** Environmental Planning and Assessment Act 1979

EP&A Regulation Environmental Planning and Assessment Regulation 2000

EPBC Act Commonwealth Environment Protection and Biodiversity Conservation Act 1999

EPL Environment Protection Licence under the POEO Act

Evening The period from 6 pm to 10 pm

Feasible Means what is possible and practical in the circumstances

Financial Year A period of 12 months from 1 July to 30 June

Fisheries NSW Fisheries Branch of the Primary Industries Group within the Department

Heritage NSW Heritage Branch of the Department of Premier and Cabinet

An Aboriginal object, an Aboriginal place, or a place, building, work, relic, moveable object, tree or precinct of heritage significance, that is listed under any of the following:

• the State Heritage Register under the Heritage Act 1977;

Heritage item

Incident

Land

- a state agency heritage and conservation register under section 170 of the Heritage Act 1977;
- a Local Environmental Plan under the EP&A Act;
- the World Heritage List;
- the National Heritage List or Commonwealth Heritage List under the EPBC Act; or
- anything identified as a heritage item under the conditions of this consent

An occurrence or set of circumstances that causes or threatens to cause material harm and which may or may not be or cause a non-compliance

Laden trains Trains transporting mining or quarry products from the site

Laden trucks Trucks transporting mining or quarry products from the site

Has the same meaning as the definition of the term in section 1.4 the EP&A Act, except for where the term is used in the noise and air quality conditions in PART B of this consent where it is defined to mean the whole of a lot, or contiguous lots owned by the same landowner, in a current plan registered at the Land Titles Office at the date of this consent

Material harm

Is harm to the environment that:

- involves actual or potential harm to the health or safety of human beings or to the environment that is not trivial, or
- results in actual or potential loss or property damage of an amount, or amounts in aggregate, exceeding \$10,000 (such loss includes the reasonable costs and expenses that would be incurred in taking all reasonable and practicable measures to prevent, mitigate or make good harm to the environment)

This definition excludes "harm" that is authorised under either this consent or any other statutory approval

MEG Mining, Exploration and Geoscience

Mine-Owned Land Land owned by a mining, petroleum or extractive industry company (or its subsidiary or related party)

Mine closure

Decommissioning and final rehabilitation of the site following the cessation of mining operations

Mine water

Water that accumulates within, or drains from, active mining and infrastructure areas and any other areas where runoff may have come into contact with carbonaceous or saline material

Minimise Implement all reasonable and feasible mitigation measures to reduce the impacts of the development

The carrying out of mining, including the extraction, processing, stockpiling and transportation of mineral ore and extractive materials on the site and the associated removal, storage and/or emplacement of vegetation, topsoil, overburden, tailings and reject material

Mining products

Includes all saleable mining products produced at the site, but excludes tailings and other wastes and rehabilitation material

Minister NSW Minister for Planning and Public Spaces, or delegate

Minor Not very large, important or serious

NSW Government

Mitigation Activities associated with reducing the impacts of the development

Negligible Small and unimportant, such as to be not worth considering

Night The period from 10pm to 7am on Monday to Saturday, and 10pm to 8am on Sundays and

Public Holidays

Noise sensitive areas Areas where mining operations are being carried out that have potential to lead to increased noise at privately-owned residences, such as elevated areas or areas near the boundary of

the site

Non-compliance An occurrence, set of circumstances or development that is a breach of this consent

'Non-road' mobile diesel equipment

Mobile equipment used in mining operations that is fitted with a diesel engine with a capacity >30 litres and that is self-propelled or transportable and primarily designed for off-

road use

NP&W Act National Parks and Wildlife Act 1974

NRAR NSW Natural Resources Access Regulator

Offset areas Means the areas shown conceptually in Appendix 4

Peppertree Quarry Quarrying operations permitted under MP 06_0074 or any subsequent development consent for extractive industry at the Peppertree Quarry granted by the Minister (or delegate) or the

Independent Planning Commission of NSW

Planning Secretary under the EP&A Act, or nominee Secretary

POEO Act Protection of the Environment Operations Act 1997

Privately-owned land

Land that is not owned by a public agency or a mining, petroleum or extractive industry

company (or its subsidiary or related party)

Public infrastructure

Linear and related infrastructure that provides services to the general public, such as roads, railways, water supply, drainage, sewerage, gas supply, electricity, telephone,

telecommunications, etc.

Quarry products

Includes all saleable quarry products produced at the Peppertree Quarry, but excludes tailings

and other wastes and rehabilitation material

Means applying judgement in arriving at a decision, taking into account: mitigation benefits, cost of mitigation versus benefits provided, community views and the nature and extent of

potential improvements

Registered Aboriginal Parties

As described in the National Parks and Wildlife Regulation 2009

RehabilitationThe restoration of land disturbed by the development to a good condition, to ensure it is safe,

stable and non-polluting

Residence Existing or approved dwelling at the date of grant of this consent

Resources Regulator

NSW Resources Regulator

RFS NSW Rural Fire Service

Site The land defined in Appendix 1

SOE Southern Overburden Emplacement as shown in Figure 1 in Appendix 2

TfNSW Transport for NSW

TSS Total suspended solids

WOE Western Overburden Emplacement as shown in Figure 1 in Appendix 2

SCHEDULE 2

PART A ADMINISTRATIVE CONDITIONS

OBLIGATION TO MINIMISE HARM TO THE ENVIRONMENT

A1. In addition to meeting the specific performance measures and criteria established under this consent, the Applicant must implement all reasonable and feasible measures to prevent, and if prevention is not reasonable and feasible, minimise, any material harm to the environment that may result from the construction and operation of the development, and any rehabilitation required under this consent.

TERMS OF CONSENT

- A2. The development may only be carried out:
 - (a) in compliance with the conditions of this consent;
 - (b) in accordance with all written directions of the Planning Secretary;
 - (c) generally in accordance with the EIS; and
 - (d) generally in accordance with the Development Layout in Appendix 2.
- A3. If there is any inconsistency between the above documents, the most recent document must prevail to the extent of the inconsistency. However, the conditions of this consent must prevail to the extent of any inconsistency.
- A4. The Applicant must comply with any requirement/s of the Planning Secretary arising from the Department's assessment of:
 - (a) any strategies, plans or correspondence that are submitted in accordance with this consent;
 - (b) any reports, reviews or audits commissioned by the Department regarding compliance with this consent;
 and
 - (c) the implementation of any actions or measures contained in these documents.

LIMITS OF CONSENT

Mining operations

A5. Mining operations may be carried out on the site, within the approved disturbance area, until 31 August 2051.

Notes:

- Under this consent, the Applicant is required to decommission and rehabilitate the site and carry out other requirements
 in relation to mining operations. Consequently, this consent will continue to apply in all respects other than to permit the
 carrying out of mining operations until the rehabilitation of the site and other requirements have been carried out to the
 required standard.
- Mining operations and rehabilitation are also regulated under the Mining Act 1992.

Extraction and Transportation

- A6. A maximum of 4 million tonnes of limestone may be extracted from the site in any financial year.
- A7. A maximum of 200,000 tonnes of clay/shale may be extracted from the site in any financial year.
- A8. A maximum of 4.2 million tonnes of limestone and clay/shale (combined) may be processed on the site in any financial year.
- A9. A maximum of 1 million tonnes of manufactured sand may be transported to Peppertree Quarry in any financial year.
- A10. A maximum of 150,000 tonnes of quarry products may be transported from Peppertree Quarry to the shared road sales stockpiling area^a in any financial year.
 - ^a The shared road sales stockpiling area is shown in Figure 1 in Appendix 2.
- A11. A maximum of 720,000 tonnes of limestone, clay/shale and quarry products (combined) may be transported from the site by road in any financial year.
- A12. A maximum of 133 laden trucks may be dispatched from the site^{a,b} in any 24-hour period.
 - Excludes any truck movements to or from the Peppertree Quarry authorised under conditions A9 and A10 or for the transportation of overburden as described in the EIS
 - b Excludes any truck movements which may be authorised under separate development consent/s for the Peppertree Quarry
- A13. A maximum of six laden trains may leave the site in any 24-hour period.

Hours of Operation

A14. The Applicant may undertake mining operations 24 hours a day, 7 days a week.

Notes:

• For limitations on blasting operations see condition B13.

Mining Depth

A15. The Applicant must not carry out any extraction or excavation below 335 m AHD.

Identification of Approved Disturbance Area

A16. Within three months of commencement of development under this consent, or other timeframe agreed by the Planning Secretary, the Applicant must provide to the Department a survey plan of the boundaries of the approved disturbance areas.

NOTIFICATION OF COMMENCEMENT

- A17. The date of commencement of each of the following phases of the development must be notified to the Department in writing, at least two weeks before that date:
 - (a) commencement of development under the consent;
 - (b) commencement of construction under the consent;
 - (c) commencement of mining operations under the consent;
 - (d) cessation of mining operations (i.e. mine closure); and
 - (e) any period of suspension of mining operations (i.e. care and maintenance).
- A18. If the phases of the development are to be further staged, the Department must be notified in writing at least two weeks prior to the commencement of each stage, of the date of commencement and the development to be carried out in that stage.

SURRENDER OF EXISTING CONSENTS OR APPROVALS

- A19. Within 12 months of the date of commencement of development under this consent, or other timeframe agreed by the Planning Secretary, the Applicant must surrender the existing development consents dated 21 February 1972, 16 October 1974, 13 February 1995 and 22 May 1997, April 2008, 20 June 2006 and 1 March 2012 as detailed in Section 3.3.4 of the EIS, and any existing or continuing use rights for the site, in accordance with the EP&A Regulation.
- A20. Upon the commencement of development under this consent, and before the surrender of existing development consents required under condition A19, the conditions of this consent prevail to the extent of any inconsistency with the conditions of those consents or approvals.

Note: This requirement does not extend to the surrender of construction and occupation certificates for existing and proposed building works under the former Part 4A of the EP&A Act or Part 6 of the EP&A Act as applies from 1 September 2018. The surrender should not be understood as implying that works legally constructed under a valid consent or approval can no longer be legally maintained or used.

DIVISION 7.1 CONTRIBUTIONS TO COUNCIL

- A21. Under section 7.11 of the EP&A Act, an annual financial contribution must be paid to Council to be put toward the maintenance of Marulan South Road used for haulage of mining and quarry products. The contribution is to be calculated in accordance with the *Goulburn Mulwaree Section 94 Development Contributions Plan 2009* or its latest version (adjusted on a quarterly basis to account for movements in the Australian Bureau of Statistics Consumer Price Index Building Construction (NSW).
- A22. The contribution must be paid to Council within 12 months of the date notified for the commencement of development under this consent and in the same month each year and be reported in the Annual Review required under condition D11.
- A23. With the approval of the Planning Secretary, the contribution required under condition A21 may be waived or reduced in lieu of road upgrading works, or other means, as may be agreed by Council.

COMMUNITY CONSULTATIVE COMMITTEE

A24. Before the commencement of development under this consent, a Community Consultative Committee (CCC) must be established for the development in accordance with the Department's *Community Consultative Committee Guidelines: State Significant Projects* (2019). The CCC must continue to operate during the life of the development, or other timeframe agreed by the Planning Secretary.

Notes:

- The CCC is an advisory committee only.
- In accordance with the Guidelines, the Committee should comprise an independent chair and appropriate representation from the Applicant, Council and the local community.
- A25. With the approval of the Planning Secretary, the Applicant may combine the CCC required by this consent with any similar CCC required by a consent or approval for any adjoining mine or quarry subject to common, shared or related ownership or management.

EVIDENCE OF CONSULTATION

- A26. Where conditions of this consent require consultation with an identified party, the Applicant must:
 - (a) consult with the relevant party prior to submitting the subject document; and
 - (b) provide details of the consultation undertaken, including:
 - (i) the outcome of that consultation, matters resolved and unresolved; and
 - (ii) details of any disagreement remaining between the party consulted and the Applicant and how the Applicant has addressed the matters not resolved.

STAGING, COMBINING AND UPDATING STRATEGIES, PLANS OR PROGRAMS

- A27. With the approval of the Planning Secretary, the Applicant may:
 - (a) prepare and submit any strategy, plan or program required by this consent on a staged basis (if a clear description is provided as to the specific stage and scope of the development to which the strategy, plan or program applies, the relationship of the stage to any future stages and the trigger for updating the strategy, plan or program);
 - (b) combine any strategy, plan or program required by this consent (if a clear relationship is demonstrated between the strategies, plans or programs that are proposed to be combined);
 - (c) update any strategy, plan or program required by this consent (to ensure the strategies, plans and programs required under this consent are updated on a regular basis and incorporate additional measures or amendments to improve the environmental performance of the development); and
 - (d) combine any strategy, plan or program required by this consent with any similar strategy, plan or program required by an adjoining mining consent or approval, in common ownership or management.
- A28. If the Planning Secretary agrees, a strategy, plan or program may be staged or updated without consultation being undertaken with all parties required to be consulted in the relevant condition in this consent.
- A29. If the Planning Secretary agrees, a strategy, plan or program may be staged without addressing particular requirements of the relevant condition of this consent if those requirements are not applicable to the particular stage.

PROTECTION OF PUBLIC INFRASTRUCTURE

- A30. Unless the Applicant and the applicable authority agree otherwise, the Applicant must:
 - repair, or pay the full costs associated with repairing, any public infrastructure^a that is damaged by carrying out the development; and
 - (b) relocate, or pay the full costs associated with relocating, any public infrastructure^a that needs to be relocated as a result of the development.
 - ^a This condition does not apply to any damage to roads caused as a result of general road usage or otherwise addressed by contributions required by condition A21 or to damage that has been compensated under the Mining Act 1992.

DEMOLITION

A31. All demolition must be carried out in accordance with *Australian Standard AS 2601-2001 The Demolition of Structures* (Standards Australia, 2001).

STRUCTUAL ADEQUACY

A32. All new buildings and structures, and any alterations or additions to existing buildings and structures, that are part of the development, must be constructed in accordance with the relevant requirements of the BCA.

Notes:

- Under Part 6 of the EP&A Act, the Applicant is required to obtain construction and occupation certificates for the proposed building works.
- Part 8 of the EP&A Regulation sets out the requirements for the certification of the development.

OPERATION OF PLANT AND EQUIPMENT

- A33. All plant and equipment used on site, or to monitor the performance of the development must be:
 - (a) maintained in a proper and efficient condition; and
 - (b) operated in a proper and efficient manner.

COMPLIANCE

A34. The Applicant must ensure that all of its employees, contractors (and their sub-contractors) are made aware of, and are instructed to comply with, the conditions of this consent relevant to activities they carry out in respect of the development.

APPLICABILITY OF GUIDELINES

- A35. References in the conditions of this consent to any guideline, protocol, Australian Standard or policy are to such guidelines, protocols, Standards or policies in the form they are in as at the date of inclusion (or later update) in the condition.
- A36. However, consistent with the conditions of this consent and without altering any limits or criteria in this consent, the Planning Secretary may, in respect of ongoing monitoring and management obligations, agree to or require compliance with an updated or revised version of such a guideline, protocol, Standard or policy, or a replacement of them.

CROWN LAND

A37. The Applicant must consult with DPIE – Crown Lands prior to undertaking any development on Crown Land or Crown Roads.

Notes:

- Under section 265 of the Mining Act 1992, the Applicant is required to enter into a compensation agreement with DPIE —
 Crown Lands prior to undertaking any mining operations or related activities on Crown land or Crown roads within a
 mining lease.
- Under section 141 of the Mining Act 1992, the Applicant is required to enter into an access arrangement with DPIE –
 Crown Lands prior to undertaking any prospecting operations on Crown land or Crown roads within an exploration licence.

PART B SPECIFIC ENVIRONMENTAL CONDITIONS

NOISE

Noise Criteria

B1. The Applicant must ensure that the noise generated by the development does not exceed the criteria in Table 1 at any residence on privately-owned land.

Table 1: Noise criteria dB(A)

Noise	Day	Evening	Night	Night
Assessment Location ^a	L _{Aeq (15 min)}	L _{Aeq (15 min)}	L _{Aeq (15 min)}	L _{AFmax}
R9	40	36	36	52
Other privately- owned residences	40	35	35	52

^aThe Noise Assessment Locations referred to in Table 1, are shown in Appendix 3.

- B2. Noise generated by the development must be monitored and measured in accordance with the relevant procedures and exemptions (including certain meteorological conditions) of the *NSW Noise Policy for Industry* (EPA, 2017).
- B3. The noise criteria in Table 1 do not apply if the Applicant has an agreement with the owner/s of the relevant residence or land to exceed the noise criteria, and the Applicant has advised the Department in writing of the terms of this agreement.

Temporary Construction Noise Limits

- B4. With the written agreement of the Planning Secretary, the Applicant may seek temporary construction noise limits above the noise criteria in Table 1, including for construction works outside of standard hours. In order to seek a temporary construction noise limit, the Applicant must develop a Construction Noise Protocol to the satisfaction of the Planning Secretary. This protocol must:
 - (a) be prepared in consultation with the EPA and any residents who may be affected by the noise generated by these works:
 - (b) specify the construction works to which the temporary construction noise limits would apply and provide justification for these limits; and
 - (c) address the relevant requirements of the Interim Construction Noise Guideline (DECC, 2009).
- B5. The Applicant must continue to operate in accordance with the noise criteria in Table 1 until and unless a Construction Noise Protocol for the specified construction works is approved by the Planning Secretary.
- B6. The Applicant must implement any Construction Noise Protocol approved by the Planning Secretary.

Noise Operating Conditions

- B7. The Applicant must:
 - take all reasonable steps to minimise noise from construction and operational activities, including low frequency noise and other audible characteristics, as well as road and on-site rail noise associated with the development;
 - (b) implement reasonable and feasible noise attenuation measures on all plant and equipment that will operate in noise sensitive areas;
 - (c) take all reasonable steps to minimise the noise impacts of the development in noise sensitive areas during the evening and night;
 - (d) operate a noise management system to guide the day to day planning of mining operations, and the implementation of both proactive and reactive noise mitigation measures to ensure compliance with the relevant conditions of this consent;
 - (e) take all reasonable steps to minimise the noise impacts of the development during noise-enhancing meteorological conditions;
 - (f) only use locomotives and rolling stock that are approved to operate on the NSW rail network in accordance with the noise limits in any relevant rolling stock operator's EPL and use reasonable endeavours to ensure that rolling stock is selected to minimise noise;
 - (g) carry out regular attended noise monitoring (at least once a month, unless otherwise agreed by the Planning Secretary) to determine whether the development is complying with the relevant conditions of this consent; and

(h) regularly assess the noise monitoring data and modify operations on the site to ensure compliance with the relevant conditions of this consent.

Noise Management Plan

- B8. The Applicant must prepare a Noise Management Plan for the development to the satisfaction of the Planning Secretary. This plan must:
 - be prepared by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) describe the measures to be implemented to ensure:
 - (i) compliance with the noise criteria and operating conditions of this consent;
 - (ii) best practice management is being employed; and
 - (iii) noise impacts of the development are minimised during noise-enhancing meteorological conditions;
 - (c) describe the measures to minimise development related road traffic noise generated on public roads;
 - (d) describe the noise management system in detail; and
 - (e) include a monitoring program that:
 - uses a combination of attended and unattended monitoring to evaluate the performance of the development;
 - (ii) monitors noise at locations representative of the most affected residences;
 - (iii) adequately supports the noise management system;
 - (iv) includes a protocol for distinguishing noise emissions of the development from any neighbouring developments; and
 - includes a protocol for identifying any noise-related exceedance, incident or non-compliance and for notifying the Department and relevant stakeholders of any such event.
- B9. The Noise Management Plan must be approved by the Planning Secretary within 3 months of the date of this consent, unless otherwise agreed by the Planning Secretary.
- B10. The Applicant must implement the Noise Management Plan as approved by the Planning Secretary.

BLASTING

Blasting Criteria

B11. The Applicant must ensure that blasting on the site does not cause exceedances of the criteria at the locations in Table 2.

Table 2: Blasting criteria

Location	Airblast overpressure (dB(Lin Peak))	Ground vibration (mm/s)	Allowable exceedance
	120	10	0%
Residence on privately-owned land ^a	115	5	5% of the total number of blasts over a financial year
Commercial receiver ^a	133	25	0%
Electricity Transmission Lines		50	0%
Public Roads		100	0%
All other infrastructure		50 (or a limit determined by the structural design methodology in AS 2187.2 - 2006, or its latest version, or other alternative limit for public infrastructure, to the satisfaction of the Planning Secretary)	0%

^a The locations referred to in Table 2 are shown in Appendix 3.

B12. The blasting criteria in Table 2 do not apply if the Applicant has an agreement with the owner/s of the relevant residence or infrastructure to exceed the blasting criteria, and the Applicant has advised the Department in writing of the terms of this agreement.

Blasting Hours

B13. The Applicant must only carry out blasting on the site between 9 am and 5 pm (Monday to Friday inclusive). No blasting is allowed on weekends, public holidays or any other time without the prior written approval of the Planning Secretary.

Blasting Frequency

- B14. The Applicant may carry out a maximum of 1 single blast event^a per day.
- B15. Condition B14 does not apply to single blast events^a that generate ground vibration of 0.5 mm/s or less at any residence on privately-owned land, or to blast misfires or blasts required to ensure the safety of the mine, its workers or the general public.
 - ^a Within conditions B14 and B15, 'single blast event' means a blast which involves either a single detonation or a number of individual blasts fired in quick succession in a discrete area of the development. Should an additional blast be required after a blast misfire, this additional blast and the blast misfire are counted as a single blast event.

Property Inspections

- B16. If the Applicant receives a written request from the owner of any privately-owned land within 2 kilometres of any approved open cut mining pit on the site for a property inspection to establish the baseline condition of any buildings and structures on their land, or to have a previous property inspection updated, then within 2 months of receiving this request the Applicant must:
 - (a) commission a suitably qualified, experienced and independent person, whose appointment is acceptable to both parties to:
 - establish the baseline condition of any buildings and other structures on the land, or update the previous property inspection report; and
 - identify measures that should be implemented to minimise the potential blasting impacts of the development on these buildings and structures; and
 - (b) give the landowner a copy of the new or updated property inspection report.
- B17. If there is a dispute over the selection of the suitably qualified, experienced and independent person, or the Applicant or the landowner disagrees with the findings of the property inspection report, either party may refer the matter to the Planning Secretary for resolution.

Property Investigations

- B18. If the owner of any privately-owned land within 2 kilometres of any approved open cut mining pit on the site or any other landowner where the Planning Secretary is satisfied an investigation is warranted, claims in writing that buildings or structures on their land have been damaged as a result of blasting on the site, then within 2 months of receiving this written claim the Applicant must:
 - (a) commission a suitably qualified, experienced and independent person, whose appointment is acceptable to both parties to investigate the claim; and
 - (b) give the landowner a copy of the property investigation report.
- B19. If this independent property investigation confirms the landowner's claim, and both parties agree with these findings, then the Applicant must repair the damage to the satisfaction of the Planning Secretary.
- B20. If there is a dispute over the selection of the suitably qualified, experienced and independent person, or the Applicant or the landowner disagrees with the findings of the independent property investigation, then either party may refer the matter to the Planning Secretary for resolution.

Blast Operating Conditions

- B21. The Applicant must:
 - (a) take all reasonable steps to:
 - (i) ensure the safety of people and livestock from blasting impacts of the development;
 - (ii) protect public and private infrastructure and property in the vicinity of the site from blasting damage associated with the development; and
 - (iii) minimise blast-related dust and fume emissions;
 - (b) ensure that blasting on the site does not damage heritage items^a, except in accordance with predictions in the document/s listed in condition A2(c), and develop specific measures to protect heritage items from any blasting damage associated with the development;

- (c) operate a comprehensive blast management system that uses a combination of meteorological forecasts and predictive blast modelling to guide the planning of blasts to minimise blasting impacts;
- (d) operate a suitable system to enable interested members of the public to get up-to-date information on the proposed blasting schedule on the site and any associated road closures, including notification via SMS message of the blasting schedule and any variations to that schedule;
- (e) use all reasonable efforts to co-ordinate the timing of blasting at the site with Peppertree Quarry to minimise cumulative blasting impacts; and
- (f) carry out regular blast monitoring to determine whether the development is complying with the relevant conditions of this consent.
 - ^aThe locations of the heritage items referred to in paragraph (b) are shown in Appendix 5.
- B22. The Applicant must not undertake blasting on the site within 500 metres of any public road or any land outside the site not owned by the Applicant, unless the Applicant has:
 - a written agreement with the relevant infrastructure owner or landowner to allow blasting to be carried out closer to the public road or land, and the Applicant has advised the Department in writing of the terms of this agreement; or
 - (b) demonstrated, to the satisfaction of the Planning Secretary, that the blasting can be carried out closer to the public road or land without compromising the safety of people or livestock or damaging the road or other buildings and structures, and updated the Blast Management Plan to include specific mitigation measures to be implemented while blasting is being carried out within 500 metres of the road or land.

Blast Management Plan

- B23. The Applicant must prepare a Blast Management Plan for the development to the satisfaction of the Planning Secretary. This plan must:
 - (a) be prepared by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) describe the blast management system and the measures that will be implemented to ensure compliance with the blasting criteria and conditions of this consent;
 - (c) include a Blast Fume Management Strategy for:
 - (i) minimising blast fume emissions;
 - (ii) rating and recording blast fume events; and
 - (iii) reporting significant blast fume events to the Department and the EPA;
 - (d) identify any agreed alternative ground vibration limits for public or private infrastructure in the vicinity of the site (if relevant);
 - (e) include a strategy to monitor, mitigate and manage the effects of blasting on heritage itemsa;
 - (f) include a monitoring program for evaluating and reporting on compliance with the relevant conditions of this consent;
 - (g) include a protocol for identifying any blast-related exceedance, incident or non-compliance and for notifying the Department, the EPA and relevant stakeholders of these events;
 - (h) include public notification procedures to enable members of the public, particularly surrounding residents, to get up-to-date information on the proposed blasting schedule; and
 - (i) include a protocol for investigating and responding to blast-related complaints.
 - ^aThe locations of the heritage items are shown in Appendix 5.
- B24. The Applicant must not undertake any blasting under this consent until the Blast Management Plan is approved by the Planning Secretary.
- B25. The Applicant must implement the Blast Management Plan as approved by the Planning Secretary.

AIR QUALITY AND GREENHOUSE GAS

Odour

B26. The Applicant must ensure that no offensive odours, as defined under the POEO Act, are emitted from the site.

Air Quality Criteria

B27. The Applicant must ensure that all reasonable and feasible avoidance and mitigation measures are employed so that particulate matter emissions generated by the development do not cause exceedances of the criteria listed in Table 3 at any residence on privately-owned land.

Table 3: Air quality criteria

Pollutant	Averaging period	Criterion
Particulate matter < 10 μm (PM ₁₀)	Annual	^{а, с} 25 µg/m ³
. ,	24 hour	^b 50 μg/m ³
Particulate matter < 2.5 µm (PM _{2.5})	Annual	^{a, c} 8 μg/m ³
. , ,	24 hour	^b 25 μg/m ³
Total suspended particulate (TSP) matter	Annual	^{а, с} 90 µg/m ³

Notes:

- ^a Total impact (i.e. incremental increase in concentrations due to the development plus background concentrations due to all other sources).
- b Incremental impact (i.e. incremental increase in concentrations due to the development on its own).
- ^c Excludes extraordinary events such as bushfires, prescribed burning, dust storms, fire incidents or any other activity agreed by the Planning Secretary.
- B28. The air quality criteria in Table 3 do not apply if the Applicant has an agreement with the owner/s of the relevant residence or land to exceed the air quality criteria, and the Applicant has advised the Department in writing of the terms of this agreement.

Mine-owned Land

- B29. Particulate matter emissions generated by the development must not exceed the criteria listed in Table 3 at any occupied residence on mine-owned land (including land owned by another mining or quarry company) unless:
 - (a) the tenant and landowner (if the residence is owned by another mining or quarry company) have been notified of any health risks associated with such exceedances in accordance with the notification requirements under PART C of this consent:
 - (b) the tenant of any land owned by the Applicant can terminate their tenancy agreement without penalty at any time, subject to giving 14 days' notice;
 - (c) air quality monitoring is regularly undertaken to inform the tenant and landowner (if the residence is owned by another mining company) of the likely particulate matter emissions at the residence; and
 - (d) data from this monitoring is presented to the tenant and landowner in an appropriate format for a medical practitioner to assist the tenant and landowner in making informed decisions on the health risks associated with occupying the property.

Air Quality Operating Conditions

- B30. The Applicant must:
 - (a) take all reasonable steps to:
 - (i) minimise odour, fume and particulate matter (including PM₁₀ and PM_{2.5}) emissions of the development, paying particular attention to minimising wheel-generated haul road emissions;
 - (ii) improve energy efficiency and reduce greenhouse gas emissions of the development;
 - (iii) minimise any visible off-site air pollution generated by the development; and
 - (iv) minimise the extent of potential dust generating surfaces exposed on the site at any given point in time;
 - (b) ensure that all 'non-road' mobile diesel equipment used in undertaking the development includes reasonable and feasible diesel emissions reduction technology;
 - (c) operate an air quality management system to guide the day to day planning of mining operations and implementation of both proactive and reactive air quality mitigation measures to ensure compliance with the relevant conditions of this consent:
 - (d) minimise the air quality impacts of the development during adverse meteorological conditions and extraordinary events (see Note c to Table 3 above);
 - (e) use all reasonable efforts to co-ordinate air quality management on the site with the air quality management at Peppertree Quarry to minimise cumulative air quality impacts;
 - (f) carry out regular air quality monitoring to determine whether the development is complying with the relevant conditions of this consent; and
 - (g) regularly assess meteorological and air quality monitoring data, and modify operations on the site to ensure compliance with the relevant conditions of this consent.

Air Quality and Greenhouse Gas Management Plan

- B31. The Applicant must prepare an Air Quality and Greenhouse Gas Management Plan for the development to the satisfaction of the Planning Secretary. This plan must:
 - (a) be prepared by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) be prepared in consultation with the EPA;
 - (c) describe the measures to be implemented to ensure:
 - (i) compliance with the air quality criteria and operating conditions of this consent;
 - (ii) best practice management is being employed to:
 - minimise the development's air quality impacts;
 - minimise the development's Scope 1 and 2 greenhouse gas emissions; and
 - improve the development's energy efficiency; and
 - (iii) the air quality impacts of the development are minimised during adverse meteorological conditions and extraordinary events;
 - (d) describe the air quality management system in detail; and
 - (e) include an air quality monitoring program, undertaken in accordance with the *Approved Methods for Sampling* and *Analysis of Air Pollutants in New South Wales* (DEC, 2007), that:
 - uses monitors to evaluate the performance of the development against the air quality criteria in this consent and to guide day to day planning of mining operations;
 - (ii) adequately supports the air quality management system; and
 - (iii) includes a protocol for identifying any air quality-related exceedance, incident or non-compliance and for notifying the Department and relevant stakeholders of these events.
- B32. The Air Quality and Greenhouse Gas Management Plan must be approved by the Planning Secretary within 3 months of the date of this consent, unless otherwise agreed by the Planning Secretary.
- B33. The Applicant must implement the Air Quality and Greenhouse Gas Management Plan as approved by the Planning Secretary.

METEOROLOGICAL MONITORING

- B34. Prior to the commencement of development under this consent, and for the life of the development, the Applicant must ensure that there is a suitable meteorological station operating in the vicinity of the site that:
 - (a) complies with the requirements in the *Approved Methods for Sampling and Analysis of Air Pollutants in New South Wales* (DEC, 2007); and
 - (b) is capable of measuring meteorological conditions in accordance with the NSW Noise Policy for Industry (EPA, 2017),

unless a suitable alternative is approved by the Planning Secretary following consultation with the EPA.

WATER

Water Supply

- B35. The Applicant must ensure that it has sufficient water for all stages of the development, and if necessary, adjust the scale of the development to match its available water supply.
- B36. The Applicant must report on water extracted from the site each year (direct and indirect) in the Annual Review, including water taken under each water licence.

Note: Under the Water Act 1912 and/or the Water Management Act 2000, the Applicant is required to obtain all necessary water licences for the development, including during rehabilitation and post mine closure.

Compensatory Water Supply

- B37. The Applicant must provide a compensatory water supply to any landowner of privately-owned land whose rightful water supply is adversely and directly impacted (other than an impact that is minor or negligible) as a result of the development, in consultation with DPIE Water, and to the satisfaction of the Planning Secretary.
- B38. The compensatory water supply measures must provide an alternative long-term supply of water that is equivalent, in quality and volume, to the loss attributable to the development. Equivalent water supply should be provided (at least on an interim basis) as soon as practicable after the loss is identified, unless otherwise agreed with the landowner.

- B39. If the Applicant and the landowner cannot agree on whether the loss of water is attributed to the development or the measures to be implemented, or there is a dispute about the implementation of these measures, then either party may refer the matter to the Planning Secretary for resolution.
- B40. If the Applicant is unable to provide an alternative long-term supply of water, then the Applicant must provide compensation, to the satisfaction of the Planning Secretary.

Notes:

The Water Management Plan (see condition B45) is required to include trigger levels for investigating potentially adverse
impacts on water supplies.

Water Discharges

- B41. The Applicant must ensure that all surface discharges from the site comply with:
 - (a) discharge limits (both volume and quality) set for the development in any EPL; or
 - (b) relevant provisions of the POEO Act.

Groundwater Management

B42. Within 12 months of the commencement of development under this consent, or other timeframe as agreed by the Planning Secretary, the Applicant must install a groundwater level and quality monitoring network within and adjacent to the Mt Frome Middle Limestone, or a suitable alternative location, in consultation with DPIE Water and to the satisfaction of the Planning Secretary.

Water Management Performance Measures

B43. The Applicant must ensure that the development complies with the performance measures in Table 4.

Table 4: Water management performance measures

Feature	Performance Measure
Water management – General	 Maintain separation between clean, dirty (i.e. sediment-laden) and mine water management systems Minimise the use of clean and potable water on the site Maximise water recycling, reuse and sharing opportunities Minimise the use of make-up water from external sources Design, install, operate and maintain water management systems in a proper and efficient manner Minimise risks to the receiving environment and downstream water users
Barbers Creek, Bungonia Creek and Shoalhaven River alluvial aquifers	 Negligible impacts to alluvial aquifers as a result of the development, beyond those predicted in the document/s listed in condition A2(c), including: negligible change in groundwater levels; negligible change in groundwater quality; and negligible impact to other groundwater users
Groundwater springs	 Negligible impacts to groundwater springs as a result of the development, beyond those predicted in the document/s listed in condition A2(c), including: negligible change in groundwater supply; and negligible change in groundwater quality
Aquatic and riparian ecosystems	 Negligible environmental consequences beyond those predicted in the document/s listed in condition A2(c) Negligible decline in baseline channel stability Develop site-specific in-stream water quality objectives in accordance with the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC & ARMCANZ, 2000) and Using the ANZECC Guidelines and Water Quality Objectives in NSW (DEC, 2006)
Marulan Creek Dam	 Negligible impacts on the quality and quantity of downstream flows and geomorphic processes in Marulan Creek and Barbers Creek as a result of the development, beyond those predicted in the document/s listed in condition A2(c) Design, install and maintain dam infrastructure in accordance with the guidance series for Controlled Activities on Waterfront Land (DPI Water, 2012)

Feature	Performance Measure	
Erosion and sediment control works	 Design, install and maintain erosion and sediment controls in accordance with the guidance series Managing Urban Stormwater: Soils and Construction including Volume 1: Blue Book (Landcom, 2004), Volume 2A: Installation of Services (DECC, 2008), Volume 2C: Unsealed Roads (DECC,2008), Volume 2D: Main Road Construction (DECC, 2008) and Volume 2E: Mines and Quarries (DECC, 2008) Design, install and maintain any creek crossings in accordance with the Fisheries NSW Policy and Guidelines for Fish Habitat Conservation and Management (DPI, 2013) and Why Do Fish Need To Cross The Road? Fish Passage Requirements for Waterway Crossings (NSW Fisheries 2003) Design, install and maintain any new infrastructure within 40 metres of watercourses in in accordance with the guidance series for Controlled Activities on Waterfront Land (DPI Water, 2012) 	
Clean water diversions and storage infrastructure	 Design, install and maintain the clean water system to capture and convey the 100 year ARI flood Maximise, as far as reasonable, the diversion of clean water around disturbed areas on the site, except where clean water is captured for use on the site 	
Sediment dams	 Design, install and maintain sediment dams in accordance with the guidance series Managing Urban Stormwater: Soils and Construction – Volume 1 (Landcom, 2004) and 2E Mines and Quarries (DECC, 2008) and the requirements under the POEO Act 	
Chemical and hydrocarbon storage	Chemical and hydrocarbon products to be stored in bunded areas in accordance with the relevant Australian Standard	
Overburden emplacements	 Design, install and maintain emplacements to encapsulate and prevent migration of acid forming and potentially acid forming materials, and saline and sodic material Design, install and maintain out-of-pit emplacements to prevent and/or manage long term saline seepage 	

B44. The performance measures in Table 4 do not apply to water management structures which were lawfully constructed prior to the commencement of development under this consent.

Water Management Plan

- B45. The Applicant must prepare a Water Management Plan for the development to the satisfaction of the Planning Secretary. This plan must:
 - (a) be prepared by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) be prepared in consultation with WaterNSW, DPIE Water, Fisheries NSW and the EPA;
 - (c) describe the measures to be implemented to ensure that the Applicant complies with the water management performance measures (see Table 4);
 - (d) utilise existing local data and build on existing monitoring programs, where practicable;
 - (e) include a:
 - (i) Site Water Balance that includes details of:
 - predicted annual inflows to and outflows from the site;
 - sources and security of water supply for the life of the development (including authorised entitlements and licences);
 - · water storage capacity;
 - water use and management on the site, including any water transfers or sharing with neighbouring mines;
 - licensed discharge points and limits; and
 - reporting procedures, including the annual preparation of an updated site water balance;
 - (ii) Erosion and Sediment Control Plan that:
 - is consistent with the requirements of Managing Urban Stormwater: Soils and Construction -Volume 1: Blue Book (Landcom, 2004) and Volume 2E: Mines and Quarries (DECC, 2008);
 - identifies activities that could cause soil erosion, generate sediment or affect flooding;

17

 includes a program to periodically review sheet, rill and gully erosion risks, particularly in relation to emplacement areas;

- includes a program to monitor the geomorphological stability of emplacement areas, in consultation with WaterNSW:
- describes measures to minimise soil erosion and the potential for the transport of sediment to downstream waters, and manage flood risk;
- · describes the location, function, and capacity of erosion and sediment control structures; and
- describes what measures would be implemented to maintain (and if necessary decommission) the structures over time;

(iii) Surface Water Management Plan that includes:

- detailed baseline data on surface water flows and quality of watercourses and/or water bodies
 potentially impacted by the development, including:
 - stream and riparian vegetation health;
 - channel stability (geomorphology); and
 - water supply for other surface water users;
- a detailed description of the surface water management system, including consideration of mitigation measures to manage downstream risks associated with alkalinity, TSS and settling agents;
- details of the water licensing requirements for all water storages (i.e. exempt, harvestable rights or licenced);
- detailed plans, design objectives and performance criteria for water management infrastructure, including:
 - water run-off diversions and catch drains;
 - water storages (excluding Marulan Creek Dam) and sediment dams;
 - emplacement areas; and
 - backfilled pits and any final voids for the development;
- surface water performance criteria, including trigger levels for identifying and investigating any
 potentially adverse impacts (or trends) associated with the development, for:
 - water supply for other water users;
 - downstream surface water flows and quality, including (but not limited to) specific trigger levels for TSS, metals, alkalinity, bicarbonate alkalinity and settling agents, which are informed by baseline data, having regard to the sensitivity of downstream waters;
 - downstream flooding impacts;
 - stream and riparian vegetation heath; and
 - post-mining water pollution from rehabilitated areas of the site;
- a program to monitor and evaluate:
 - compliance with the relevant performance measures listed in Table 4 and the performance criteria in this plan;
 - controlled and uncontrolled discharges and seepage/leachate from the site;
 - impacts on water supply for other water users;
 - surface water inflows, outflows and storage volumes, to inform the Site Water Balance; and
 - the effectiveness of the surface water management system and the measures in the Erosion and Sediment Control Plan;
- reporting procedures for the results of the monitoring program, including notifying other water users
 of any elevated results; and
- a trigger action response plan to respond to any exceedances of the relevant performance measures or performance criteria, and repair, mitigate and/or offset any adverse surface water impacts of the development;

(iv) Marulan Creek Dam Management Plan that includes:

detailed plans, design objectives and performance criteria for the dam infrastructure;

- detailed measures to ensure compliance with the relevant performance measures in Table 4;
- performance criteria, including trigger levels for identifying and investigating any potentially adverse impacts (or trends) associated with the development with respect to:
 - downstream geomorphic processes;
 - sediment transmission;
 - ecological function; and

- water quality;
- a program to monitor and evaluate compliance with the relevant performance measures in Table
 4, including justification for proposed monitoring frequencies and parameters;
- reporting procedures for the results of the monitoring program;
- a remediation and rehabilitation strategy for areas of Marulan Creek both above and below the
 dam up to the entry to the Barber's Creek gorge, which has been prepared by a suitably qualified
 and experienced fluvial geomorphologist, having regard to A Rehabilitation Manual for Australian
 Streams (Land and Water Resources Research and Development Corporation, 2000); and
- a trigger action response plan to respond to any exceedances of the relevant performance measures or performance criteria, and repair, mitigate and/or offset any adverse impacts on downstream flows and/or ecological processes;

(v) Groundwater Management Plan that includes:

- detailed baseline data of groundwater levels, yield and quality for groundwater resources and groundwater dependent ecosystems potentially impacted by the development, including groundwater supply for other water users;
- a detailed description of the groundwater management system;
- groundwater performance criteria, including trigger levels for identifying and investigating any potentially adverse groundwater impacts (or trends) associated with the development, on:
 - regional and local aquifers (alluvial and hardrock);
 - groundwater springs; and
 - groundwater supply for other water users such as licensed privately-owned groundwater bores;
- a program to monitor and evaluate:
 - compliance with the relevant performance measures listed in Table 4 and the performance criteria in this plan;
 - water loss/seepage from water storages into the groundwater system, including from any final voids;
 - groundwater inflows, outflows and storage volumes, to inform the Site Water Balance;
 - the hydrogeological setting of any nearby alluvial aquifers and the likelihood of any indirect impacts from the development;
 - impacts on groundwater dependent ecosystems;
 - impacts on groundwater supply for other water users;
 - the effectiveness of the groundwater management system;
- reporting procedures for the results of the monitoring program, including notifying other water users
 of any elevated results;
- a trigger action response plan to respond to any exceedances of the relevant performance measures and groundwater performance criteria, and repair, mitigate and/or offset any adverse groundwater impacts of the development;
- a program to periodically validate the groundwater model for the development, including an independent review of the model every 3 years (unless otherwise agreed by the Planning Secretary), and comparison of monitoring results with modelled predictions; and
- (vi) a protocol to report on the measures, monitoring results and performance criteria identified above, in the Annual Review referred to in condition D11.
- B46. The Water Management Plan must be approved by the Planning Secretary within 3 months from the date of this consent, unless otherwise agreed by the Planning Secretary.
- B47. The Applicant must implement the Water Management Plan as approved by the Planning Secretary.
- B48. The Applicant must commission an independent audit of the long-term geomorphological stability of the WOE and SOE. This audit must:
 - be conducted by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) be carried out in consultation with WaterNSW;
 - (c) be undertaken within three months of the completion of the surface water management systems for the WOE and SOE in Stage 4 of the development, or other timeframe agreed by the Planning Secretary;
 - (d) assess whether the surface water management system has been constructed in accordance with the conditions
 of this consent and is geomorphologically stable;

- (e) recommend appropriate measures or actions to ensure the long-term stability of the WOE and SOE (if required);
- (f) be conducted and reported to the satisfaction of the Planning Secretary.
- B49. Within three months of commissioning the independent audit required under condition B48, or other timeframe agreed by the Planning Secretary, the Applicant must submit a copy of the Audit Report to the Planning Secretary and to WaterNSW, together with its response to any recommendations contained in the audit report and a timetable for the implementation of its recommendations.
- B50. The Applicant must implement the recommendations of the Audit Report to the satisfaction of the Planning Secretary.

BIODIVERSITY

Biodiversity Credits Required

- B51. Prior to commencing construction under this consent, or other timeframe agreed by the Planning Secretary, the Applicant must retire the biodiversity credits specified in *Table 5*. The retirement of credits must be carried out in consultation with BCD and in accordance with the Biodiversity Offsets Scheme of the BCT Act, to the satisfaction of the BCT.
- B52. The retirement of credits must be carried out in consultation with BCD and in accordance with the Biodiversity Offsets Scheme of the BC Act, to the satisfaction of the BCT.

Table 5: Biodiversity credit requirements

Credit Type	Credits Required		
Ecosystem Credits			
PCT 1334 Yellow Box – Blakely's Red Gum grassy woodland on the tablelands, South Eastern Highlands ^{a, b}	1,038		
PCT 778 Coast Grey Box – stringybark dry woodland on slopes of the Shoalhaven Gorges – Southern Sydney Basin	885		
PCT 1150 - Silvertop Ash - Blue-leaved Stringybark shrubby open forest on ridges, north east South Eastern Highlands Bioregion	260		
PCT 731 Broad-leaved Peppermint – Red Stringybark grassy open forest on undulating hills, South Eastern Highlands Bioregion 325			
Species Credits			
Solanum celatum	2		
Koala ^b	2,454		
Large-eared Pied Bat ^b 3,836			

Commensurate with White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland CEEC under the EPBC Act

B53. The Applicant must implement the Biodiversity Offset Strategy in consultation with BCD, the BCT and MEG.ª

Biodiversity Management Plan

- B54. The Applicant must prepare a Biodiversity Management Plan to the satisfaction of the Planning Secretary. This plan must:
 - (a) be prepared by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) be prepared in consultation with BCD;
 - (c) describe the short, medium, and long-term measures to be undertaken to manage the remnant vegetation and fauna habitat on the site and within the offset areas;
 - (d) describe how biodiversity management would be integrated with similar measures within other management plans, including the Rehabilitation Management Plan referred to in condition B82;

^b Under clause 6.6A of the Biodiversity Conservation Regulation 2017, variation rules do not apply to the identified species or community and the required credits must be retired on a like-for-like basis basis

^a Consultation with MEG is only required in respect of land-based biodiversity offsets

- (e) include detailed performance and completion criteria for evaluating the performance of the Biodiversity Offset Strategy and include triggers for remedial action, where these performance or completion criteria are not met;
- (f) describe how the Biodiversity Offset Strategy will be implemented and secured;
- (g) describe the measures to be implemented within the approved disturbance areas to:
 - (i) minimise the amount of clearing;
 - (ii) minimise impacts on fauna, including undertaking pre-clearance surveys and measures to minimise the risk of vehicle strike;
 - (iii) provide for the salvage, transplanting and/or propagation of any threatened flora found during preclearance surveys, in accordance with the *Guidelines for the Translocation of Threatened Plants in Australia* (Vallee et al., 2004); and
 - (iv) maximise the salvage of resources, including tree hollows, vegetation and soil resources, for beneficial reuse, including fauna habitat enhancement;
- (h) describe the measures to be implemented on the site to:
 - (i) minimise impacts to White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland CEEC including potential edge effects within identified buffer zones, and contribute to conservation strategies for this CEEC;
 - (ii) minimise impacts on fauna habitat resources such as hunting and foraging areas, habitat trees, fallen timber and hollow-bearing trees;
 - enhance the quality of vegetation, vegetation connectivity and wildlife corridors including through the assisted regeneration and/or targeted revegetation of appropriate canopy, sub-canopy, understorey and ground strata;
 - (iv) introduce naturally scarce fauna habitat features such as nest boxes and salvaged tree hollows and promote the use of these introduced habitat features by threatened fauna species;
 - (v) manage any potential conflicts with Aboriginal heritage values;
 - (vi) protect vegetation and fauna habitat outside of the approved disturbance areas;
 - (vii) manage the collection and propagation of seed from the local area;
 - (viii) control weeds, including measures to avoid and mitigate the spread of weeds;
 - (ix) control feral pests and diseases with consideration of actions identified in relevant threat abatement plans;
 - (x) control erosion;
 - (xi) manage any grazing and agriculture;
 - (xii) control access to vegetated or revegetated areas; and
 - (xiii) manage bushfire hazards;
- (i) include a seasonally-based program to monitor and report on the effectiveness of the above measures, progress against the detailed performance indicators and completion criteria, and identify improvements that could be implemented to improve biodiversity outcomes;
- (j) identify the potential risks to the successful implementation of the Biodiversity Management Plan, and include a description of the contingency measures to be implemented to mitigate against these risks; and
- (k) include details of who would be responsible for monitoring, reviewing, and implementing the plan.
- B55. The Applicant must not clear any vegetation described in the document/s listed in condition A2(c) until the Biodiversity Management Plan is approved by the Planning Secretary.
- B56. The Applicant must implement the Biodiversity Management Plan as approved by the Planning Secretary.

HERITAGE

Protection of Aboriginal Heritage

B57. The Applicant must ensure that the development does not cause any direct or indirect impact on any identified heritage items located outside the approved disturbance area, beyond those predicted in the document/s listed in condition A2(c).

Note: Identified heritage items are shown in the figures in Appendix 5.

- B58. If suspected human remains are discovered on the site, then all work surrounding the area must cease, and the area must be secured. The Applicant must immediately notify NSW Police Force and Heritage NSW, and work must not recommence in the area until authorised by NSW Police Force and Heritage NSW.
- B59. The Applicant must ensure that all known Aboriginal objects or Aboriginal places on the site and within the offset areas are properly recorded, and those records are kept up to date, in the Aboriginal Heritage Information Management System (AHIMS) Register.

Aboriginal Cultural Heritage Management Plan

- B60. The Applicant must prepare an Aboriginal Cultural Heritage Management Plan for the development. The plan must:
 - (a) be prepared by suitably qualified and experienced persons whose appointment has been endorsed by the Planning Secretary;
 - (b) be prepared in consultation with Heritage NSW and Registered Aboriginal Parties;
 - (c) describe the measures to be implemented on the site or within the offset areas to:
 - (i) comply with the heritage-related operating conditions of this consent;
 - (ii) ensure all workers receive suitable Aboriginal cultural heritage training/inductions prior to carrying out any activities which may cause impacts to Aboriginal objects or Aboriginal places, and that suitable records are kept of these inductions;
 - (iii) protect, monitor and manage identified Aboriginal objects and Aboriginal places (including any proposed archaeological investigation of potential subsurface objects, collection and salvage of objects within the approved disturbance area) in accordance with the commitments made in the document/s listed in condition A2(c);
 - (iv) protect Aboriginal objects and Aboriginal places located outside the approved disturbance area from impacts of the development;
 - (v) manage the discovery of suspected human remains and any new Aboriginal objects or Aboriginal places, including provisions for burials, over the life of the development;
 - (vi) maintain and manage reasonable access for relevant Aboriginal stakeholders to Aboriginal objects and Aboriginal places (outside of the approved disturbance area); and
 - (vii) facilitate ongoing consultation and involvement of Registered Aboriginal Parties in the conservation and management of Aboriginal cultural heritage on the site;
 - (d) include a strategy for the care, control and storage of Aboriginal objects salvaged on the site, both during the life of the development and in the long term; and
 - (e) in relation to the women's cultural heritage site along Marulan Creek, include:
 - an assessment of the potential impacts of the Marulan Creek dam and associated flow regime on the site, prepared by an intangible cultural heritage specialist in consultation with the identified knowledge holders; and
 - (ii) assessment of whether mitigation to any negative impacts should occur through periodic cultural flows.
- B61. The Applicant must not disturb any heritage item until the Aboriginal Cultural Heritage Management Plan is approved by the Planning Secretary.
- B62. The Applicant must implement the Aboriginal Cultural Heritage Management Plan approved by the Planning Secretary.

Historic Heritage Management Plan

- B63. The Applicant must prepare a Historic Heritage Management Plan for the development, in respect of all non-Aboriginal cultural heritage items, to the satisfaction of the Planning Secretary. This plan must:
 - (a) be prepared by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) be prepared in consultation with Council and in accordance with the relevant Heritage NSW guidelines;
 - (c) describe how the historic heritage values of the site would be recorded and preserved;
 - (d) identify all heritage items in the vicinity of the site and include a statement of significance for each item;
 - (e) describe the measures to be implemented on the site or within the offset areas to:
 - ensure all workers on the site receive suitable heritage training/inductions prior to carrying out any activities which may cause impacts to historic heritage, and that suitable records are kept of these inductions:
 - (ii) protect heritage items located outside the approved disturbance area from impacts of the development, beyond those predicted in the document/s listed in condition A2(c);
 - (iii) undertake photographic/archival recording of any items of heritage significance predicted to be impacted by the development, prior to disturbance; and
 - (iv) manage any new heritage items discovered during the life of the development; and
 - (f) include a strategy for the care, control and storage of heritage relics salvaged from the site.
- B64. The Applicant must not disturb any heritage item until the Historic Heritage Management Plan is approved by the Planning Secretary.
- B65. The Applicant must implement the Historic Heritage Management Plan as approved by the Planning Secretary.

VISUAL

Visual Amenity and Lighting

- B66. The Applicant must:
 - take all reasonable steps to minimise the visual and off-site lighting impacts of the development;
 - (b) take all reasonable steps to minimise views of mining operations and associated equipment from privatelyowned residences, public roads and the Bungonia Lookdown;
 - (c) ensure no fixed outdoor lights shine directly above the horizontal or above the building line or any illuminated structure:
 - (d) ensure no in-pit mobile lighting rigs shine directly above the pit wall and other mobile lighting rigs do not shine directly above the horizontal (except where required for emergency safety purposes);
 - (e) ensure that all external lighting associated with the development complies with relevant Australian Standards including the latest version of Australian Standard AS4282 (INT) 1997 Control of Obtrusive Effects of Outdoor Lighting;
 - (f) ensure that the visual appearance of any new buildings, structures, facilities or works (including paint colours and specifications) is aimed at blending as far as possible with the surrounding landscape.
- B67. The Applicant must take all reasonable steps to minimise the night lighting impacts associated with road transport along Marulan South Road. This may include, but not be limited to, the construction of earth bunds within the realigned Marulan South Road reserve, in consultation with Council.

WASTE

- B68. The Applicant must:
 - (a) take all reasonable steps to minimise the waste generated by the development;
 - (b) classify all waste in accordance with the Waste Classification Guidelines (EPA, 2014);
 - (c) dispose of all waste at appropriately licensed waste facilities;
 - (d) manage on-site sewage treatment and disposal in accordance with the requirements of Council; and
 - (e) monitor and report on the effectiveness of the waste minimisation and management measures in the Annual Review referred to in condition D11.
- B69. Except as expressly permitted in an applicable EPL, specific resource recovery order or exemption under the *Protection of the Environment Operations (Waste) Regulation 2014*, the Applicant must not receive waste at the site for storage, treatment, processing, reprocessing or disposal.
- B70. Prior to commencing development under this consent, the Applicant must prepare a Contaminated Materials Protocol to the satisfaction of the Planning Secretary. This protocol must describe the procedures to be implemented in the event that potentially contaminated material is identified during construction, including:
 - (a) procedures for the testing, removal and disposal of potentially contaminated material; and
 - (b) measures to ensure compliance with the requirements of SafeWork NSW and relevant guidelines.
- B71. The Applicant must implement the Contaminated Materials Protocol as approved by the Planning Secretary.

DANGEROUS GOODS

- B72. The Applicant must ensure that the storage, handling, and transport of:
 - (a) dangerous goods is done in accordance with the relevant Australian Standards, particularly AS1940 and AS1596, and the Dangerous Goods Code; and
 - (b) explosives are managed in accordance with the requirements of the Resources Regulator.

BUSHFIRE MANAGEMENT

- B73. The Applicant must:
 - (a) ensure that the development:
 - (i) provides for asset protection in accordance with the relevant requirements in *the Planning for Bushfire Protection* (RFS, 2019) guideline; and
 - (ii) ensure that there is suitable equipment to respond to any fires on the site; and

- (b) assist the RFS and emergency services to the extent practicable if there is a fire in the vicinity of the site.
- B74. Prior to commencing development under this consent, the Applicant must prepare a Bushfire Management Plan for the development, in consultation with RFS. This plan must include a:
 - (a) contact person and 24-hour contact phone number;
 - (b) schedule and description of proposed bushfire mitigation works, including:

- (i) location of managed and unmanaged vegetation within the site;
- (ii) location of water supply; and
- (iii) internal access roads;
- (c) plan identifying the location and storage of bulk flammable liquids and materials;
- (d) 'hot works' management plan, including:
 - (i) circumstances when 'hot works' are limited or prohibited; and
 - (ii) safety measures to be implemented when 'hot works' are being conducted; and
- (e) emergency/evacuation plan in accordance with the *Guidelines for the* Preparation of *Emergency/Evacuation* Plans (RFS) and Australian Standard *AS3745 Planning for Emergencies in Facilities*.
- B75. The Applicant must implement the Bushfire Management Plan in consultation with RFS.

REHABILITATION

Rehabilitation Objectives

B76. The Applicant must rehabilitate the site in accordance with the conditions imposed on the mining lease(s) associated with the development under the *Mining Act 1992*. This rehabilitation must be generally consistent with the proposed rehabilitation strategy described in documents listed in condition A2(c) and shown in Appendix 6, and must comply with the objectives in Table 6.

Table 6: Rehabilitation objectives

Feature	Objective
All areas of the site affected by the development	 Safe, stable and non-polluting Fit for the intended post-mining land use/s Establish the final landform and post-mining land use/s as soon as practicable after cessation of mining operations Minimise post-mining environmental impacts
Areas proposed for native ecosystem re-establishment	 Establish/restore self-sustaining native woodland ecosystems Establish local plant community types, with a particular focus on species commensurate with White Box-Yellow Box-Blakely's Red Gum Grassy Woodland and Derived Native Grassland CEEC Establish: riparian habitat within any retained water features; habitat, feed and foraging resources for threatened fauna species (including the Koala); and vegetation connectivity and wildlife corridors, as far as is reasonable and feasible
Final Landform	 Stable and sustainable for the intended post-mining land use/s Integrated with surrounding natural landforms and other mine rehabilitated landforms, to the greatest extent practicable Incorporate micro-relief and drainage features that mimic natural topography and mitigate erosion, to the greatest extent practicable Maximise surface water drainage to the natural environment i.e. free draining (excluding final void catchment) Minimise visual impacts, where practicable
Final void	 Designed as long term groundwater sink to prevent the release of saline water into the surrounding environment, unless further mine planning and final landform design processes identify a more suitable outcome for the final void (see condition B79) Minimise to the greatest extent practicable: the size and depth; any high wall instability risk; and the risk of flood interaction Maximise potential for beneficial reuse, where practicable
Surface infrastructure of the development (excluding Marulan Creek Dam)	To be decommissioned, removed and rehabilitated, unless the Resources Regulator agrees otherwise
Water quality	 Water retained on the site is fit for the intended post-mining land use/s Water discharged from the site is suitable for receiving waters and fit for aquatic ecology and riparian vegetation

Feature	Objective	
Community	 Ensure public safety Minimise adverse socio-economic effects associated with mine closure 	

B77. The rehabilitation objectives in Table 6 apply to the entire site, including all landforms which were lawfully constructed prior to the commencement of development under this consent. The Applicant is not required to retrospectively incorporate micro-relief and drainage features that mimic natural topography and mitigate erosion on landforms that have been approved and constructed under the previous consents, however, further erosion control works may be required to these landforms to address long term stability issues (if identified).

Progressive Rehabilitation

B78. The Applicant must rehabilitate^a the site progressively, that is, as soon as reasonably practicable following disturbance. All reasonable steps must be taken to minimise the total area exposed at any time. Interim stabilisation and temporary vegetation strategies must be employed when areas prone to dust generation, soil erosion and weed incursion cannot be permanently rehabilitated.

^aThis condition does not prevent further disturbance at some later stage of the development of areas that have been rehabilitated.

Rehabilitation Strategy

- B79. The Applicant must prepare a Rehabilitation Strategy for all land disturbed by the development to the satisfaction of the Planning Secretary. This strategy must:
 - (a) be prepared by a suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) be prepared in consultation with DPIE Water, BCD, Resources Regulator and Council;
 - (c) build upon the Rehabilitation Objectives in Table 6, describe the overall rehabilitation outcomes for the site, and address all aspects of rehabilitation including mine closure, final landform (including final voids), postmining land use/s and water management;
 - (d) align with strategic rehabilitation and mine closure objectives and address the principles of the *Strategic Framework for Mine Closure* (ANZMEC and MCA, 2000);
 - (e) describe how the rehabilitation measures would be integrated with the measures in the Biodiversity Management Plan referred to in condition B54:
 - (f) describe how rehabilitation will be integrated with the mine planning process, including a plan to address premature or temporary mine closure;
 - (g) include indicative mine plans and scheduling for life-of-mine rehabilitation showing each rehabilitation domain;
 - (h) include details of target vegetation communities and species to be established within the proposed revegetation areas;
 - (i) investigate opportunities to refine and improve the final landform and final void outcomes over time;
 - (j) include a post-mining land use strategy to investigate and facilitate post-mining beneficial land uses for the site (including the final void), that:
 - (i) align with regional and local strategic land use planning objectives and outcomes;
 - (ii) support a sustainable future for the local community;
 - (iii) utilise existing mining infrastructure, where practicable; and
 - (iv) avoid disturbing self-sustaining native ecosystems, where practicable;
 - include a stakeholder engagement plan to guide rehabilitation and mine closure planning processes and outcomes;
 - investigate ways to minimise adverse socio-economic effects associated with rehabilitation and mine closure;
 and
 - (m) include a program to periodically review and update this strategy at least every three years.
- B80. The Rehabilitation Strategy must be approved by the Planning Secretary within 6 months from the date of this consent, unless otherwise agreed by the Planning Secretary .
- B81. The Applicant must implement the Rehabilitation Strategy approved by the Planning Secretary.

Rehabilitation Management Plan

- B82. The Applicant must prepare a Rehabilitation Management Plan for the development, in accordance with the conditions imposed on the mining lease(s) associated with the development under the *Mining Act 1992*. This plan must:
 - (a) be prepared in consultation with the Department and Council;

- (b) be prepared in accordance with any relevant Resources Regulator Guidelines;
- include detailed performance indicators and completion criteria for each rehabilitation domain, and triggers for remedial actions;
- (d) include an overview of the identified risks to achieving successful rehabilitation;
- (e) describe the measures to be implemented on the site to achieve the Rehabilitation Objectives in Table 6, the requirements of the Rehabilitation Strategy referred to in condition B79 and the criteria in paragraph (c);
- (f) include detailed mine plans and scheduling for progressive rehabilitation to be initiated, undertaken and/or completed over the next three years, or other suitable time period as agreed with the Resources Regulator;
- (g) include a program to monitor, independently audit and report on progress against the criteria in paragraph (c) and the effectiveness of the measures in paragraph (e);
- (h) describe any further studies, work, research or consultation that will be undertaken to expand the site-specific rehabilitation knowledge base, reduce uncertainty and improve rehabilitation outcomes; and
- (i) outline intervention and adaptive management techniques to ensure rehabilitation remains on a trajectory of achieving the Rehabilitation Objectives, Rehabilitation Completion Criteria and the Final Landform in the Rehabilitation Management Plan as soon as reasonably practical.

TRANSPORT

Monitoring of Product Transport

- B83. The Applicant must:
 - (a) keep accurate records^a of the:
 - i) amount of mining products and quarry products transported from the site (on a daily basis); and
 - (ii) date and time of each laden train and truck movement generated by the development; and
 - (b) publish these records in the Annual Review.
 - Records must contain sufficient details to demonstrate compliance with conditions A6 to A13 of this consent.

Transport Operating Conditions

- B84. Until such time as the eastern end of Marulan South Road is de-proclaimed, the Applicant must:
 - (a) make suitable arrangements to ensure the safety of public road users (including traffic signals, signage or other traffic control measures), to the satisfaction of Council; and
 - (b) ensure that any traffic signals on public roads are designed, installed and operated to the satisfaction of TfNSW.

B85. The Applicant must:

- (a) ensure that all laden trucks entering or exiting the site have their loads covered;
- (b) ensure that all laden trucks exiting the site are cleaned of material that may fall from vehicles, before leaving the site:
- (c) take all reasonable steps to minimise traffic safety issues and disruption to local road users; and
- (d) take all reasonable steps to ensure that appropriate signage is displayed on all trucks used to transport quarry products from the development so they can be easily identified by other road users.

Road Realignment

- B86. Unless otherwise agreed by Council, the Applicant must construct the new alignment of Marulan South Road as described in the documents listed in A2 (c), to the following standard:
 - (a) 7 m wide sealed carriageway, comprising two 3.5 m wide travel lanes;
 - (b) 1.5 m wide shoulders (1 m sealed) on both sides of the road;
 - (c) 3 m wide cleared zone; and
 - (d) Wide Centre Line Treatment, with retroreflective pavement markers, edge-line markers and guideposts as agreed by Council,

in accordance with relevant Austroads guidelines and to the satisfaction of Council.

Notes:

- The upgrade works identified above include all road furniture and safety requirements required to meet relevant road standards, to the satisfaction of the relevant roads authority.
- If there is a dispute between the relevant parties about the implementation of this condition, then any party may refer the matter to the Planning Secretary for resolution.

B87. The Applicant must ensure that public access is maintained along the existing alignment of Marulan South Road until the new alignment (as required under condition B86) is constructed and dedicated to Council.

Road Restrictions

- B88. Unless otherwise agreed by Council, the Applicant must not dispatch more than 75 laden trucks per day or 5 laden trucks per hour from the site, until Marulan South Road is upgraded as described in the documents listed in A2 (c), to the following standard:
 - (a) 7 m wide sealed carriageway, comprising two 3.5 m wide travel lanes;
 - (b) 1.5 m wide shoulders (1 m sealed) on both sides of the road;
 - (c) 3 m wide cleared zone; and
 - (d) Wide Centre Line Treatment, with retroreflective pavement markers, edge-line markers and guideposts as agreed by Council.

in accordance with relevant Austroads guidelines and to the satisfaction of Council. The requirements of condition B88 do not apply to the section of road which is to be realigned under condition B86 above.

Notes:

- The upgrade works identified above include all road furniture and safety requirements required to meet relevant road standards, to the satisfaction of the relevant roads authorities.
- If there is a dispute between the relevant parties about the implementation of this condition, then any party may refer the matter to the Planning Secretary for resolution.
- B89. The design standard required under condition B88 may be varied with the agreement of Council.

Traffic Management Plan

- B90. The Applicant must prepare a Traffic Management Plan for the development to the satisfaction of the Planning Secretary. This plan must:
 - be prepared by suitably qualified and experienced person/s whose appointment has been endorsed by the Planning Secretary;
 - (b) be prepared in consultation with TfNSW and Council;
 - (c) include details of all transport routes and traffic types to be used for development-related traffic;
 - (d) describe the measures to be implemented to ensure compliance with conditions B84 and B85 above;
 - include details of the measures to be implemented to minimise traffic safety issues and disruption to local road users, including minimising potential for conflict with school buses and stock movements;
 - (f) include a Drivers' Code of Conduct that includes procedures to ensure that drivers:
 - (i) adhere to posted speed limits or other required travelling speeds;
 - (ii) adhere to designated transport routes; and
 - (iii) implement safe and quiet driving practices;
 - (g) describe the measures to be put in place to ensure compliance with the Drivers' Code of Conduct; and
 - (h) propose measures to minimise the transmission of dust and tracking of material onto the surface of public roads from vehicles exiting the site.
- B91. The Traffic Management Plan must be approved by the Planning Secretary within 3 months from the date of this consent, unless otherwise agreed by the Planning Secretary.
- B92. The Applicant must implement the Traffic Management Plan as approved by the Planning Secretary.

PART C ADDITIONAL PROCEDURES

NOTIFICATION OF LANDOWNERS/TENANTS

- C1. Within one month of the date of this consent, the Applicant must:
 - (a) notify in writing the owner of any privately-owned land within 2 kilometres of any approved open cut mining pit on the site that they are entitled to ask the Applicant for an inspection to establish the baseline condition of any buildings or structures on their land, or to have a previous property inspection report updated;
 - (b) notify the tenants of any mine-owned land of their rights under this consent; and
 - (c) send a copy of the fact sheet entitled "Mine Dust and You" (NSW Health, 2017) to the owners and/or existing tenants of any land (including mine-owned land) where the predictions in the document/s listed in condition A2(c) identify that dust emissions generated by the development are likely to be greater than the relevant air quality criteria identified in condition B27 at any time during the life of the development.
- C2. Prior to entering into any tenancy agreement for any land owned by the Applicant that is predicted to experience exceedances of the recommended dust and/or noise criteria, the Applicant must:
 - (a) advise the prospective tenants of the potential health and amenity impacts associated with living on the land, and give them a copy of the fact sheet entitled "Mine Dust and You" (NSW Health, 2017); and
 - (b) advise the prospective tenants of the rights they would have under this consent,

to the satisfaction of the Planning Secretary.

NOTIFICATION OF EXCEEDANCES

- C3. As soon as practicable and no longer than 7 days after obtaining monitoring results showing an exceedance of any noise, blasting or air quality criterion in PART B of this consent, the Applicant must provide the details of the exceedance to any affected landowners, tenants and the CCC.
- C4. For any exceedance of any air quality criterion in PART B of this consent, the Applicant must also provide to any affected land owners and/or tenants a copy of the fact sheet entitled "Mine Dust and You" (NSW Health, 2017).

INDEPENDENT REVIEW

- C5. If a landowner considers the development to be exceeding any relevant noise, blasting or air quality criterion in PART B of this consent, they may ask the Planning Secretary in writing for an independent review of the impacts of the development on their residence or land.
- C6. If the Planning Secretary is not satisfied that an independent review is warranted, the Planning Secretary will notify the landowner in writing of that decision, and the reasons for that decision, within 21 days of the request for a review.
- C7. If the Planning Secretary is satisfied that an independent review is warranted, within 3 months, or other timeframe agreed by the Planning Secretary and the landowner, of the Planning Secretary's decision, the Applicant must:
 - (a) commission a suitably qualified, experienced and independent person, whose appointment has been approved by the Planning Secretary, to:
 - (i) consult with the landowner to determine their concerns;
 - (ii) conduct monitoring to determine whether the development is complying with the relevant criterion in PART B of this consent; and
 - (iii) if the development is not complying with the relevant criterion, identify measures that could be implemented to ensure compliance with the relevant criterion; and
 - (b) give the Planning Secretary and landowner a copy of the independent review; and

28

(c) comply with any written requests made by the Planning Secretary to implement any findings of the review.

PART D ENVIRONMENTAL MANAGEMENT, REPORTING AND AUDITING

ENVIRONMENTAL MANAGEMENT

Environmental Management Strategy

- D1. The Applicant must prepare an Environmental Management Strategy for the development to the satisfaction of the Planning Secretary. This strategy must:
 - (a) provide the strategic framework for environmental management of the development;
 - (b) identify the statutory approvals that apply to the development;
 - (c) set out the role, responsibility, authority and accountability of all key personnel involved in the environmental management of the development;
 - (d) set out the procedures to be implemented to:
 - keep the local community and relevant agencies informed about the operation and environmental performance of the development;
 - (ii) receive record, handle and respond to complaints;
 - (iii) resolve any disputes that may arise during the course of the development;
 - (iv) respond to any non-compliance and any incident;
 - (v) respond to emergencies; and
 - (e) include:
 - (i) references to any strategies, plans and programs approved under the conditions of this consent; and
 - (ii) a clear plan depicting all the monitoring to be carried out under the conditions of this consent.
- D2. The Environmental Management Strategy must be approved by the Planning Secretary within 3 months from the date of this consent, unless otherwise agreed by the Planning Secretary
- D3. The Applicant must implement the Environmental Management Strategy as approved by the Planning Secretary.

Adaptive Management

D4. The Applicant must assess and manage development-related risks to ensure that there are no exceedances of the criteria and performance measures in this consent. Any exceedance of these criteria or performance measures constitutes a breach of this consent and may be subject to penalty or offence provisions under the EP&A Act or EP&A Regulation.

Where any exceedance of these criteria or performance measures has occurred, the Applicant must, at the earliest opportunity:

- (a) take all reasonable and feasible steps to ensure that the exceedance ceases and does not recur;
- (b) consider all reasonable and feasible options for remediation (where relevant) and submit a report to the Department describing those options and any preferred remediation measures or other course of action; and
- (c) implement reasonable remediation measures as directed by the Planning Secretary.

Management Plan Requirements

- D5. Management plans required under this consent must be prepared in accordance with relevant guidelines, and include:
 - (a) summary of relevant background or baseline data;
 - (b) details of:
 - (i) the relevant statutory requirements (including any relevant approval, licence or lease conditions);
 - (ii) any relevant limits or performance measures and criteria; and
 - (iii) the specific performance indicators that are proposed to be used to judge the performance of, or guide the implementation of, the development or any management measures;
 - (c) any relevant commitments or recommendations identified in the document/s listed in condition A2(c);
 - (d) a description of the measures to be implemented to comply with the relevant statutory requirements, limits, or performance measures and criteria;
 - (e) a program to monitor and report on the:
 - (i) impacts and environmental performance of the development; and
 - (ii) effectiveness of the management measures set out pursuant to condition D4(c);
 - (f) a contingency plan to manage any unpredicted impacts and their consequences and to ensure that ongoing impacts reduce to levels below relevant impact assessment criteria as quickly as possible;
 - (g) a program to investigate and implement ways to improve the environmental performance of the development over time:

- (h) a protocol for managing and reporting any:
 - (i) incident, non-compliance or exceedance of any impact assessment criterion or performance criterion);
 - (ii) complaint; or
 - (iii) failure to comply with other statutory requirements;
- public sources of information and data to assist stakeholders in understanding environmental impacts of the development; and
- (j) a protocol for periodic review of the plan.

Note: The Planning Secretary may waive some of these requirements if they are unnecessary or unwarranted for particular management plans.

D6. The Applicant must ensure that management plans prepared for the development are consistent with the conditions of this consent and any EPL issued for the site.

REVISION OF STRATEGIES, PLANS AND PROGRAMS

- D7. Within three months of:
 - (a) the submission of an incident report under condition D9;
 - (b) the submission of an Annual Review under condition D11;
 - (c) the submission of an Independent Environmental Audit under condition D12;
 - (d) the approval of any modification of the conditions of this consent (unless the conditions require otherwise); or
 - (e) notification of a change in development phase under condition A17;

the suitability of existing strategies, plans and programs required under this consent must be reviewed by the Applicant.

D8. If necessary, to either improve the environmental performance of the development, cater for a modification or comply with a direction, the strategies, plans and programs required under this consent must be revised, to the satisfaction of the Planning Secretary. Where revisions are required, the revised document must be submitted to the Planning Secretary for approval within six weeks of the review.

Note: This is to ensure strategies, plans and programs are updated on a regular basis and to incorporate any recommended measures to improve the environmental performance of the development.

REPORTING AND AUDITING

Incident Notification

D9. The Applicant must immediately notify the Department and any other relevant agencies immediately after it becomes aware of an incident. The notification must be in writing through the Department's Major Projects Website and identify the development (including the development application number and name) and set out the location and nature of the incident.

Non-Compliance Notification

D10. Within seven days of becoming aware of a non-compliance, the Applicant must notify the Department of the non-compliance. The notification must be in writing through the Department's Major Projects Website and identify the development (including the development application number and name), set out the condition of this consent that the development is non-compliant with, why it does not comply and the reasons for the non-compliance (if known) and what actions have been, or will be, undertaken to address the non-compliance.

Note: A non-compliance which has been notified as an incident does not need to also be notified as a non-compliance.

Annual Review

- D11. By the end of July each year after the commencement of development, or other timeframe agreed by the Planning Secretary, a report must be submitted to the Department reviewing the environmental performance of the development, to the satisfaction of the Planning Secretary. This review must:
 - (a) describe the development (including any rehabilitation) that was carried out in the previous financial year, and the development that is proposed to be carried out over the current financial year;
 - (b) include a comprehensive review of the monitoring results and complaints records of the development over the previous financial year, including a comparison of these results against the:
 - (i) relevant statutory requirements, limits or performance measures/criteria;
 - (ii) requirements of any plan or program required under this consent;
 - (iii) monitoring results of previous years; and
 - (iv) relevant predictions in the document/s listed in condition A2(c);
 - (c) identify any non-compliance or incident which occurred in the previous financial year, and describe what actions were (or are being) taken to rectify the non-compliance and avoid reoccurrence;

- (d) evaluate and report on:
 - (i) the effectiveness of the noise and air quality management systems; and
 - (ii) compliance with the performance measures, criteria and operating conditions of this consent;
- (e) identify any trends in the monitoring data over the life of the development;
- identify any discrepancies between the predicted and actual impacts of the development, and analyse the
 potential cause of any significant discrepancies; and
- (g) describe what measures will be implemented over the next financial year to improve the environmental performance of the development.
- D12. Copies of the Annual Review must be submitted to Council and made available to the CCC and any interested person upon request.

Independent Environmental Audit

- D13. Within one year of commencement of development under this consent, and every three years after, unless the Planning Secretary directs otherwise, the Applicant must commission and pay the full cost of an Independent Environmental Audit of the development. The audit must:
 - (a) be led by a suitably qualified, experienced and independent auditor whose appointment has been endorsed by the Planning Secretary;
 - (b) be conducted by a suitably qualified, experienced and independent team of experts (including any expert in field/s specified by the Planning Secretary) whose appointment has been endorsed by the Planning Secretary;
 - (c) be carried out in consultation with the relevant agencies and the CCC;
 - (d) assess the environmental performance of the development and whether it is complying with the relevant requirements in this consent, water licences and mining leases for the development (including any assessment, strategy, plan or program required under these approvals);
 - (e) review the adequacy of any approved strategy, plan or program required under the abovementioned approvals and this consent;
 - (f) recommend appropriate measures or actions to improve the environmental performance of the development and any assessment, strategy, plan or program required under the abovementioned approvals and this consent; and
 - (g) be conducted and reported to the satisfaction of the Planning Secretary.
- D14. Within three months of commencing an Independent Environmental Audit, or other timeframe agreed by the Planning Secretary, the Applicant must submit a copy of the audit report to the Planning Secretary, and any other NSW agency that requests it, together with its response to any recommendations contained in the audit report, and a timetable for the implementation of the recommendations. The recommendations must be implemented to the satisfaction of the Planning Secretary.

Monitoring and Environmental Audits

- D15. Any condition of this consent that requires the carrying out of monitoring or an environmental audit, whether directly or by way of a plan, strategy or program, is taken to be a condition requiring monitoring or an environmental audit under Division 9.4 of Part 9 of the EP&A Act. This includes conditions in respect of incident notification, reporting and response, non-compliance notification, compliance report and independent audit.
 - For the purposes of this condition, as set out in the EP&A Act, "monitoring" is monitoring of the development to provide data on compliance with the consent or on the environmental impact of the development, and an "environmental audit" is a periodic or particular documented evaluation of the development to provide information on compliance with the consent or the environmental management or impact of the development.
- D16. Noise, blast and/or air quality monitoring under this consent may be undertaken at suitable representative monitoring locations instead of at privately-owned residences or other locations listed in Part B, providing that these representative monitoring locations are set out in the respective management plan/s.

ACCESS TO INFORMATION

- D17. Before the commencement of development under this consent until the completion of all rehabilitation required under this consent, the Applicant must:
 - (a) make the following information and documents (as they are obtained, approved or as otherwise stipulated within the conditions of this consent) publicly available on its website:
 - (i) the documents listed in condition A2(c);
 - (ii) all current statutory approvals for the development;
 - (iii) all approved strategies, plans and programs required under the conditions of this consent;
 - (iv) minutes of CCC meetings;

- (v) regular reporting on the environmental performance of the development in accordance with the reporting requirements in any plans or programs approved under the conditions of this consent;
- (vi) a comprehensive summary of the monitoring results of the development, reported in accordance with the specifications in any conditions of this consent, or any approved plans and programs;
- (vii) a summary of the current phase and progress of the development;
- (viii) contact details to enquire about the development or to make a complaint;
- (ix) a complaints register, updated monthly;
- (x) the Annual Reviews of the development;
- (xi) audit reports prepared as part of any Independent Environmental Audit of the development and the Applicant's response to the recommendations in any audit report; and
- (xii) any other matter required by the Planning Secretary; and
- (b) keep such information up to date, to the satisfaction of the Planning Secretary.

APPENDIX 1 SCHEDULE OF LAND

Lot	DP	Tenure	Landowner
1	1124189	Freehold	Boral Cement Limited
2	1124189	Freehold	Boral Cement Limited
12	881240	Freehold	Boral Resources (NSW) Pty Ltd
23	867667	Freehold	Boral Resources (NSW) Pty Ltd
3	203290	Freehold	Boral Resources (NSW) Pty Ltd
4	203290	Freehold	Boral Resources (NSW) Pty Ltd
282	750029	Crown	Crown Land
24	867667	Freehold	Boral Resources (NSW) Pty Ltd
22	867667	Freehold	Boral Limited
1	261615	Freehold	Boral Cement Limited
1	860561	Freehold	Boral Cement Limited
2	860561	Freehold	Boral Cement Limited
1	106569	Freehold	Boral Coment Limited
2	527500	Freehold	Boral Cement Limited
1	527500 106569	Freehold Freehold	Boral Cement Limited Boral Cement Limited
100	1064794	Freehold	Boral Cement Limited Boral Cement Limited
12	570616	Freehold	Boral Resources (NSW) Pty Ltd
16	111641	Freehold	Boral Cement Limited
14	111641	Freehold	Boral Cement Limited Boral Cement Limited
15	111641	Freehold	Boral Cement Limited
7	111641	Freehold	Boral Cement Limited
6	111641	Freehold	Boral Cement Limited
111	830458	Freehold	Boral Resources (NSW) Pty Ltd
114	830458	Freehold	Boral Limited
112	830458	Freehold	Boral Cement Limited
113	830458	Freehold	Boral Cement Limited
2	1186554	Freehold	Boral Cement Limited
1	617992	Freehold	Boral Cement Limited
9	111645	Freehold	Boral Cement Limited
1	132244	Freehold	Boral Cement Limited
2	132244	Freehold	Boral Cement Limited
3	106569	Freehold	Boral Coment Limited
3	527501	Freehold	Boral Cement Limited
4 21	106569 657523	Freehold Freehold	Boral Cement Limited Boral Resources (NSW) Pty Ltd
3	617992	Freehold	Boral Cement Limited
114	750029	Freehold	Boral Cement Limited Boral Cement Limited
82	750029	Freehold	Boral Cement Limited
32	750029	Freehold	Boral Cement Limited
7300	1149129	Crown	Crown Land
165	750029	Freehold	Boral Cement Limited
193	750029	Freehold	Boral Cement Limited
115	750029	Freehold	Boral Cement Limited
131	750029	Freehold	Boral Cement Limited
154	750029	Freehold	Boral Cement Limited
186	750029	Freehold	Boral Cement Limited
179	750029	Freehold	Boral Cement Limited
156	750029	Freehold	Boral Cement Limited
197	750029	Freehold	Boral Coment Limited
83	750029	Freehold	Boral Cement Limited
155 87	750029 750029	Freehold Freehold	Boral Cement Limited Boral Cement Limited
1701	610507	Freehold	Boral Cement Limited Boral Cement Limited
1701	610507	Freehold	Boral Cement Limited Boral Cement Limited
98	750029	Crown	Crown Land
187	750029	Freehold	Boral Cement Limited
191	750029	Freehold	Boral Cement Limited
7302	1149129	Crown	Crown Land
7301	1149129	Crown	Crown Land
7303	1149129	Crown	Crown Land

APPENDIX 2 DEVELOPMENT LAYOUT PLANS

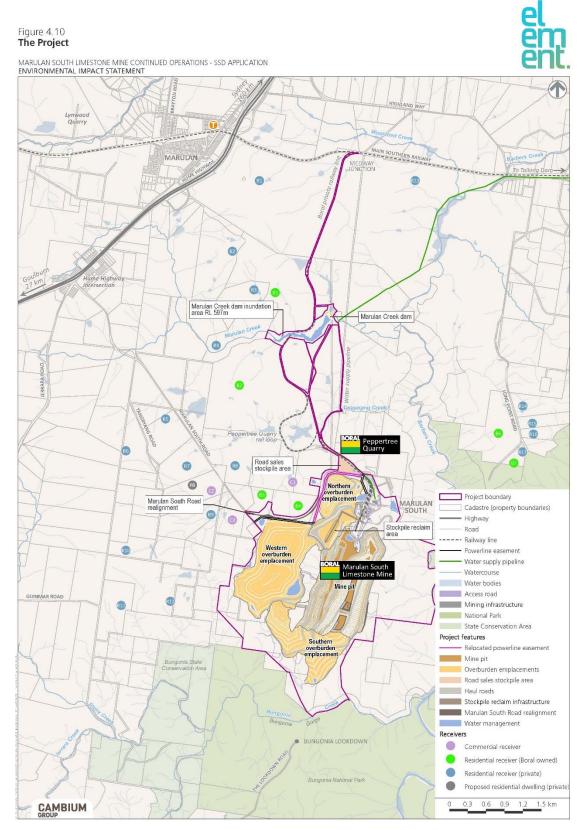


Figure 1: Development Layout Plan

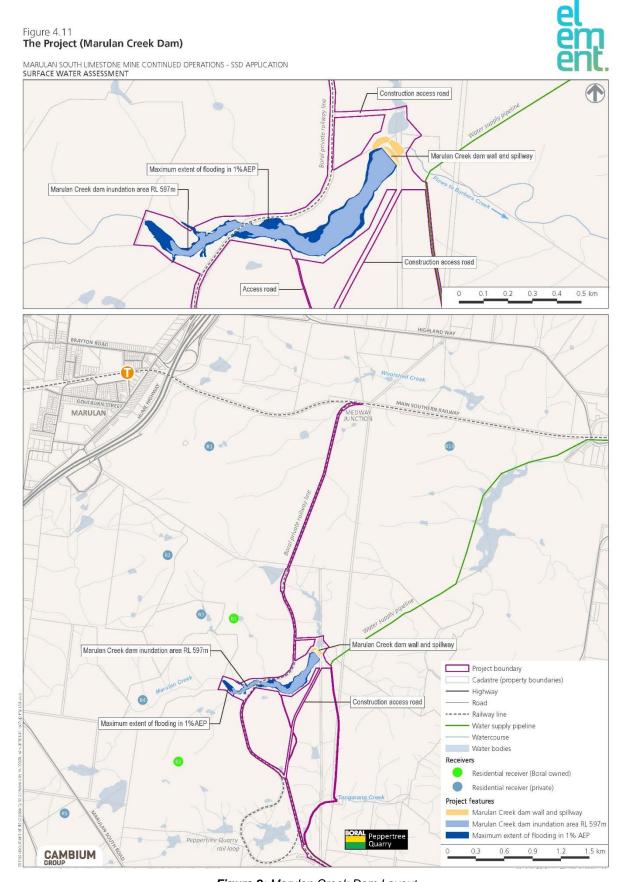


Figure 2: Marulan Creek Dam Layout

APPENDIX 3 RECEIVER LOCATIONS

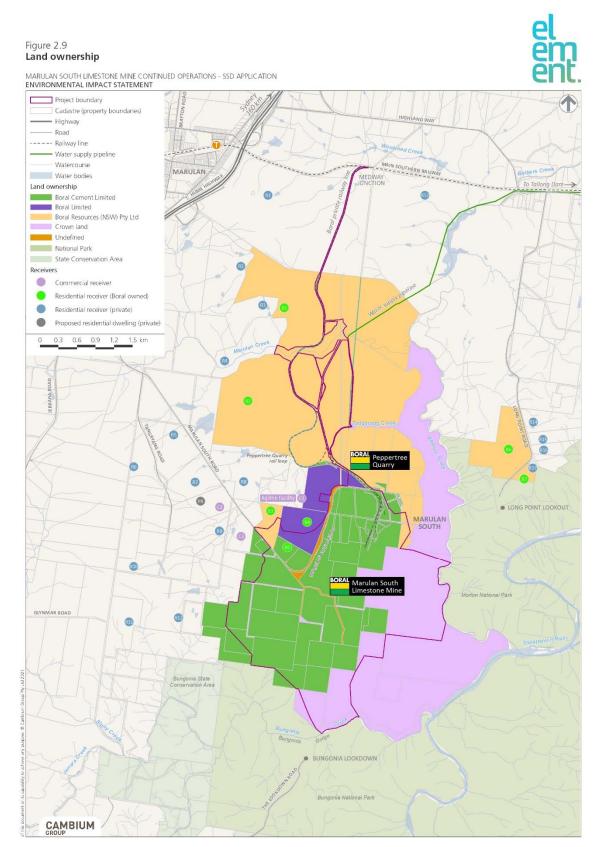


Figure 3: Receiver Locations

APPENDIX 4 BIODIVERSITY OFFSET STRATEGY

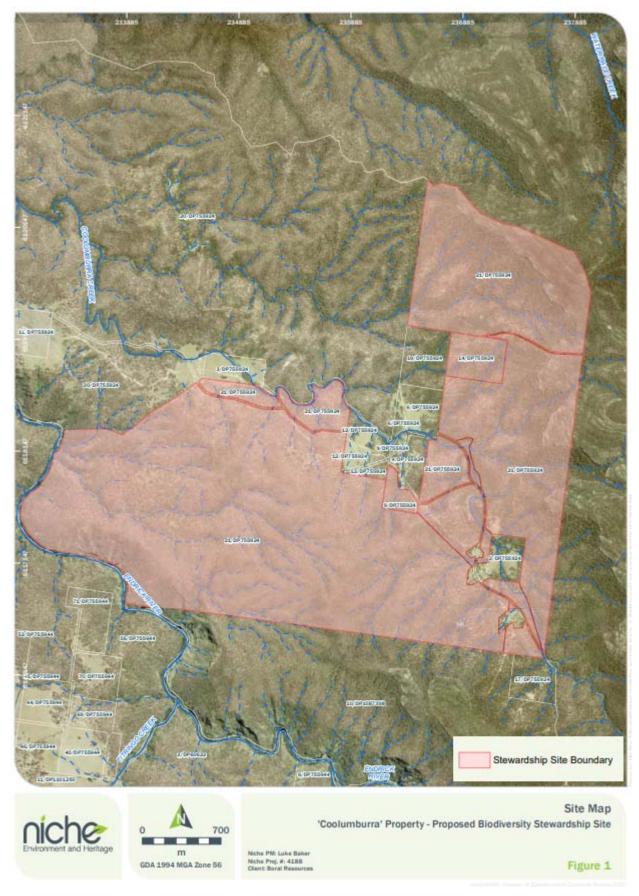
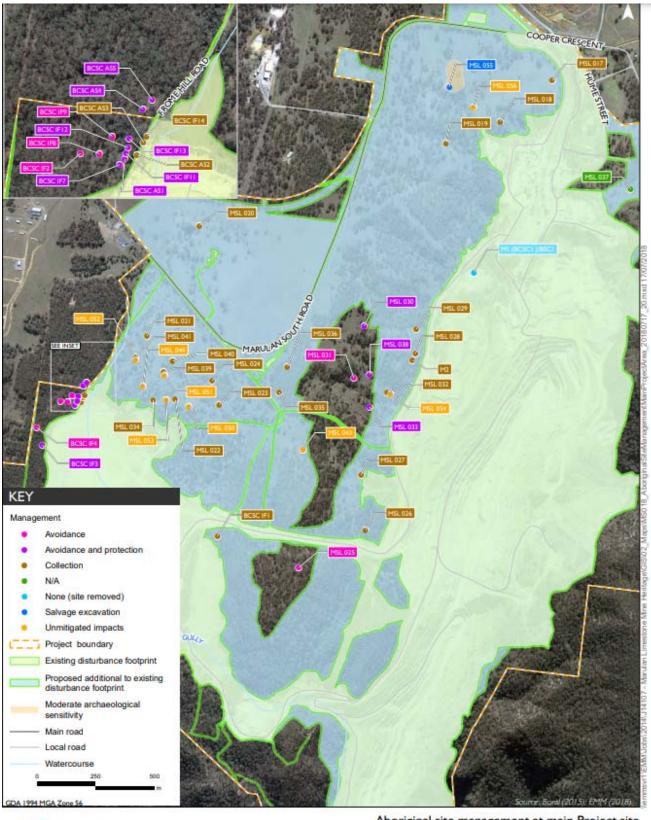



Figure 4: Biodiversity offset area

APPENDIX 5 HERITAGE ITEMS

Aboriginal site management at main Project site Marulan South Limestone Mine Continued Operations Project Aboriginal Cultural Heritage Assessment

Figure 11.1

Figure 5: Aboriginal Heritage Sites

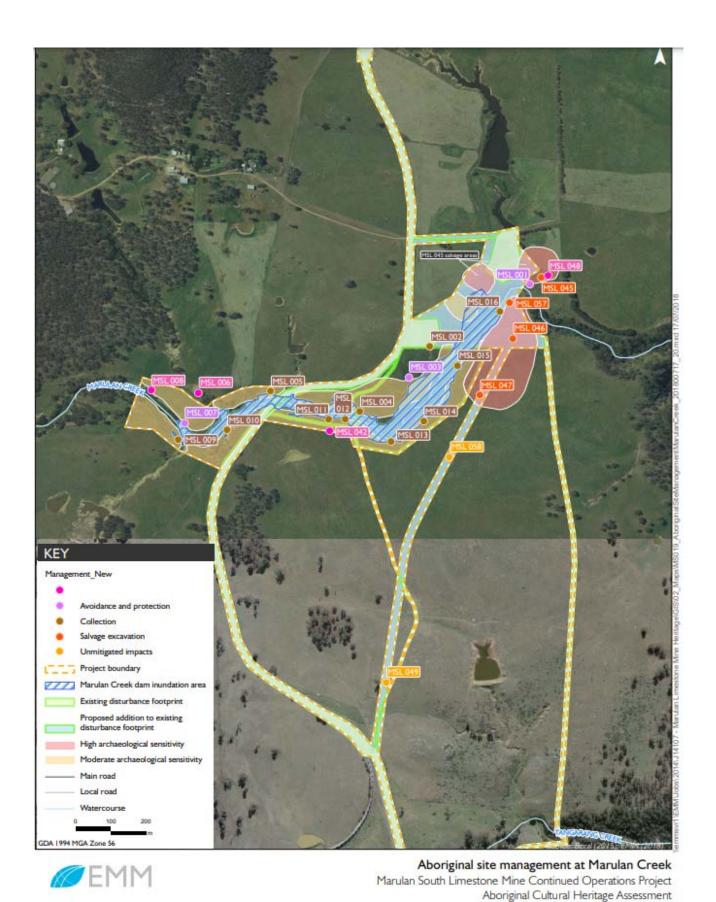


Figure 6: Aboriginal Heritage Sites (Marulan Creek Dam)

Figure 11.2

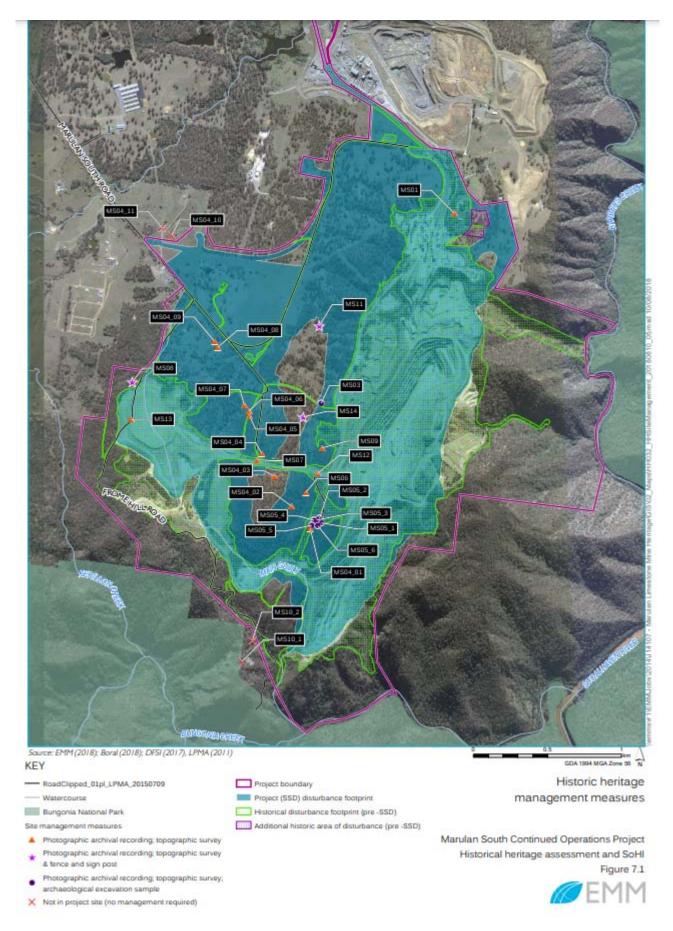


Figure 7: Historic Heritage Sites

APPENDIX 6 REHABILITATION PLANS

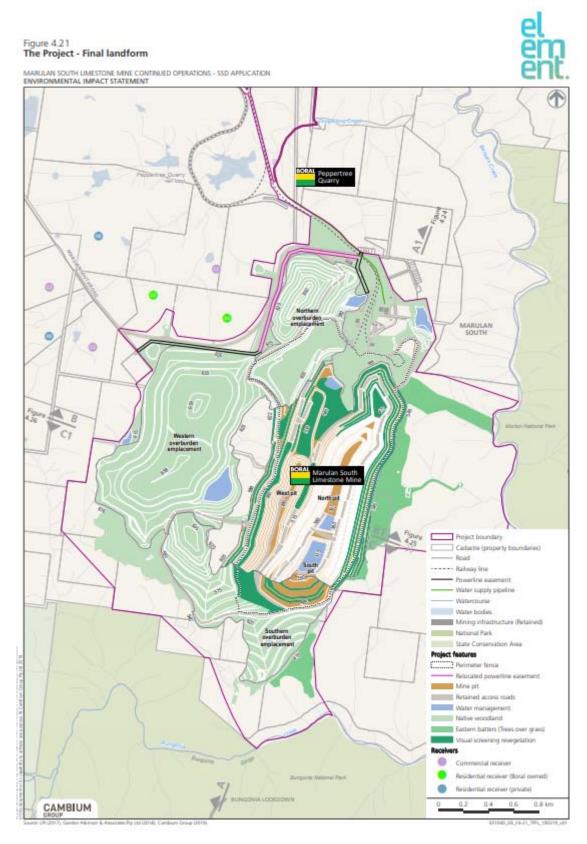


Figure 8: Conceptual Final Landform

41

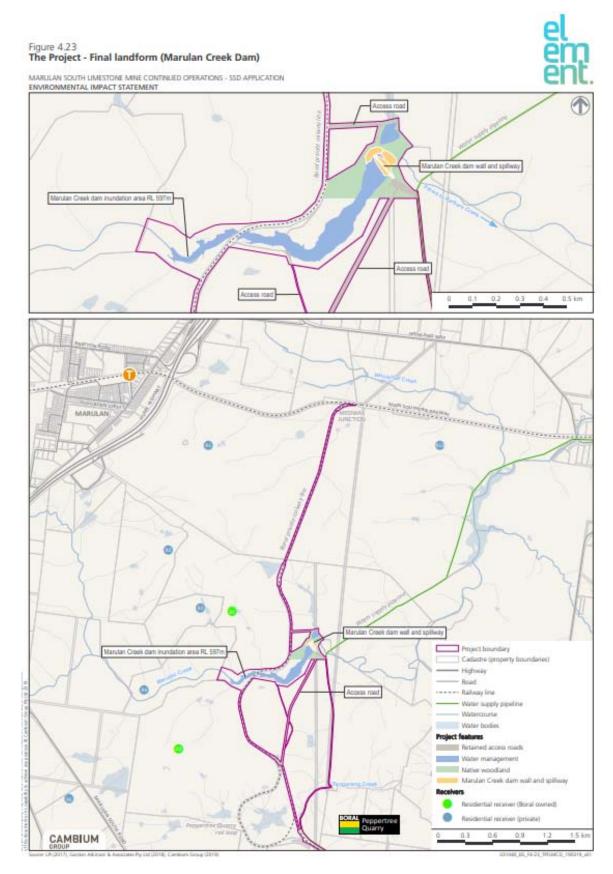


Figure 9: Conceptual Final Landform (Marulan Creek Dam)

42

APPENDIX C

Ecosystem Function Analysis

Marulan South Limestone Mine Vegetation Monitoring

November 2024

Prepared By: International Environmental Consultants Pty Limited "Longmead" 700 Wombeyan Caves Road High Range NSW 2575

CONTENTS

1.		INTRO	DUCTION	1
	1.1	RΑ	CKGROUND	1
	1.2		JECTIVES	1
	1.3	_	THODOLOGY SUMMARY	
	1.4		OGRAPHIC SETTING	2 3 3 5
	1.5		IMATIC CONDITIONS	3
	1.6		MMARY OF RESULTS	5
2.		ECOSY	YSTEM FUNCTION ANALYSIS (EFA)	6
	2.1	OV	ZERVIEW	6
		2.1.1	Objectives	6
		2.1.2	Success Criteria	6 7 8 8
	2.2	ME	THODOLOGY	8
		2.2.1		8
		2.2.2	Landscape Function Analysis (LFA)	8
		2.2.3		9
		2.2.4	Habitat Complexity	10
	2.3	PH	OTOGRAPHIC MONITORING	11
		2.3.1	Photographic Record Site 2	11
		2.3.2	5 1	13
		2.3.3	Photographic Record Site 4	15
		2.3.4	Photographic Record Site 5	17
		2.3.5	Photographic Record Reference Site	19
	2.4		SULTS AND DATA ANALYSIS	21
		2.4.1	3	21
	٥.	2.4.2	Landscape Function Analysis	24
	2.5		SCUSSION AND RECOMMENDATIONS	35
		2.5.1	General	35
		2.5.2	Rehabilitation Success Criteria	35
		2.5.3	Site 2	36
		2.5.4	Site 3	36
		2.5.5	Site 4	37
		2.5.6	Site 5	37
		2.5.7	Reference Site	38
3.		RAPID	VISUAL ASSESSMENT (RVA)	39
	3.1	OV	ZERVIEW	39
		3.1.1	Background	39
		3.1.2	_	39
	3.2		THODOLOGY	39
		3.2.1	Site Descriptions	40
	3.3		SULTS	49
		3.3.1	RVA1- Bryces Gully	49
		3.3.2		52

	3.3	3.3 RVA3- EFA Site T5	54
	3.3	3.4 RVA4- EFA Site T2	57
	3.3	3.5 RVA5 – EFA Site T3	59
	3.3	3.6 RVA6- EFA Reference Site	62
	3.3	3.7 RVA7- Lime Dump Road North	65
	3.3	3.8 RVA8- Lime Dump Road South	67
	3.3	3.9 Summary of RVA Results	71
	3.4	RECOMMENDATIONS AND CONCLUSIONS	72
	3.4	4.1 Recommendations	72
	3.4	4.2 Conclusions	72
4.	BI	ODIVERSITY ASSESSMENT METHOD (BAM)	73
4.	BI 6	ODIVERSITY ASSESSMENT METHOD (BAM) OVERVIEW	73
4.		OVERVIEW	
4.	4.1	OVERVIEW	73
4.	4.1 4.1 4.2	OVERVIEW 1.1 Objectives	73 73
4.	4.1 4.2 4.2	OVERVIEW 1.1 Objectives METHODOLOGY	73 73 73
4.	4.1 4.2 4.2 4.2	OVERVIEW 1.1 Objectives METHODOLOGY 2.1 BAM Monitoring Locations	73 73 73 73
4.	4.1 4.2 4.2 4.2	OVERVIEW 1.1 Objectives METHODOLOGY 2.1 BAM Monitoring Locations 2.2 Vegetation Integrity Survey	73 73 73 73 74

Appendices

Appendix A – EFA Raw Data Appendix B – BAM Raw Data

List of Plans

Plan 1	EFA Monitoring Plan
Plan 2	RVA Monitoring Plan
Plan 3	BAM Monitoring Plan

List of Tables

Table 1.1	Rehabilitation Success Criteria
Table 2.1	Transect Description
Table 2.2	Ryegrass and Couch Cover Seed Mix
Table 2.3	Patch/Interpatch Types and Descriptions
Table 2.4	Summary of LOI Results
Table 2.5	Transect Species List
Table 2.6	Habitat Complexity Woodland Scores
Table 2.7	Rehabilitation Success Summary
Table 3.1	RVA Site Locations
Table 3.2	Summary of RVA Results
Table 3.3	Recommendations
Table 4.1	BAM Monitoring Sites
Table 4.2	Dominant Native Plant Species at Monitoring Plots

List of Graphs

Graph 1.1	Monthly rainfall and number of rain days
Graph 1.2	Monthly Minimum and Maximum Temperatures
Graph 2.1	Soil Surface Assessment Index (%)
Graph 2.2	Species Richness at three levels of vegetation strata
Graph 2.3	Average ground, shrub, litter and bare cover percentages
Graph 4.1	Native Species Richness
Graph 4.2	Native Species Cover
Graph 4.3	Weed Cover Percent
Graph 4.4	Litter Cover Percent
Graph 4.5	Total Log Lengths
Graph 4.6	Vegetation Integrity Assessment

1. INTRODUCTION

1.1 BACKGROUND

Boral's Marulan South Limestone Mine (the Mine) has been operational since the 1830s, consisting of a limestone mine and processing plant. It is located directly to the north of Bungonia Gorge and approximately 35km east of Goulburn NSW, with lands covering 650 hectares of a significant limestone and granodiorite deposit. Resources over a total of 616.5 hectares of land are to be extracted under current approvals.

The requirements for vegetation monitoring are documented in both the 2023 Biodiversity Management Plan and the 2023 Rehabilitation Strategy for the Mine. The Biodiversity Management Plan was prepared in accordance with Condition B54 of SSD7009 and Commonwealth approval EPBC 2015/7521. The Rehabilitation Strategy was prepared in accordance with Condition B79 of SSD7009 but also to satisfy Mining Amendment (Standard Conditions of Mining Leases-Rehabilitation) Regulation 2021 under the Mining Act 1992.

The Mine has committed to progressive rehabilitation of identified disturbed land as part of the Rehabilitation Strategy. The strategy centres on completed slopes of the waste emplacements and external batters of the mining area. These are shaped according to the final landform design, top dressed, contour ripped and sown. Soil testing and characterisation is undertaken to determine any amelioration needed while sowing time is generally governed by available soil moisture.

The Rehabilitation Strategy identifies rehabilitation completion criteria and sets out a monitoring methodology, referred to as Ecosystem Function Analysis, which provides the data needed to verify the achievement of the rehabilitation completion criteria.

The Biodiversity Management Plan seeks to protect native vegetation remnants on site from inadvertent direct impacts as well as to maintain or improve their condition and habitat value. This plan outlines a separate vegetation monitoring program which seeks to obtain data using the Biodiversity Assessment Method and Rapid Visual Assessment.

The vegetation monitoring program commenced in 2020 and generally covers annual Spring surveys. The results are published in the Annual Review for the Mine.

1.2 OBJECTIVES

The specific objectives of the vegetation monitoring program are as follows:

- ☐ Ensure appropriate and representative monitoring to allow verification that the Biodiversity Management Plan initiatives and objectives are being successfully implemented.
- ☐ Ensure appropriate and representative monitoring to allow verification that the completion criteria described in the Rehabilitation Strategy are being achieved.

The overall objectives contained in both the Biodiversity Management Plan and the Rehabilitation Strategy are complementary and relate to measures to enhance existing biodiversity resources on site and to achieve a satisfactory final native vegetation land use for areas disturbed by mining activities. The monitoring program has been designed to provide a scientifically robust method to verify the achievement of these objectives.

1.3 METHODOLOGY SUMMARY

A combination of three vegetation monitoring methods is used to verify rehabilitation success as well as assess the overall health of remnant vegetation on site. These methods are described in detail in the main management plans and summarised below:

- □ The rehabilitation monitoring program is based on the CSIRO developed Ecosystem Function Analysis (EFA) method (Tongway & Hindley, 2004). This method is supported by the Resources Regulator and commenced on site in July 2020. The method assesses a variety of soil and vegetation-based parameters which are assigned numeric values that are converted into percentages indicating landscape function, vegetation dynamics, habitat complexity and disturbance. Over time, these percentages can be compared to control sites to indicate if the rehabilitation is progressing toward the desired self-sustaining ecosystem. The requirement for monitoring rehabilitation success is outlined in Section 6.3 of the MSL Rehabilitation Strategy.
- ☐ The Rapid Visual Assessment (RVA) is used to document signs of regeneration, disturbance and threats to remnant vegetation on site. The method uses photopoints and observations which are assessed annually to determine if disturbances have been addressed. These outcomes are reported against the completion criteria. RVA commenced in November 2023 and is outlined in Section 7.3 of the MSL Biodiversity Management Plan.
- □ The Biodiversity Assessment Method (BAM) (DPIE, 2020a) provides a consistent method to assess biodiversity values at impact sites as well as stewardship sites. This method is used to monitor the condition of remnant vegetation outside of the disturbance footprint. The method calculates the vegetation integrity through composition, structure and function attributes that are entered into the BAM calculator. Scores are compared to benchmarks which are specific to each Plant Community Type (PCT). The BAM commenced at Marulan South in November 2024, as required under Section 7.2 of the MSL Biodiversity Management Plan.

Each method has different strengths and specific purposes. The EFA method is better for use in monitoring rehabilitation progress including at the very early stage of Growth Media Development. This is because it includes soil condition and nutrient cycling associated with landscape function. It also includes vegetation structure and floristics at very early stages of development which is essential to the ultimate establishment of the target vegetation community. The EFA method provides verifiable data which is used by the Resources Regulator to signoff on completed rehabilitation by demonstrating that the specific completion criteria have been met.

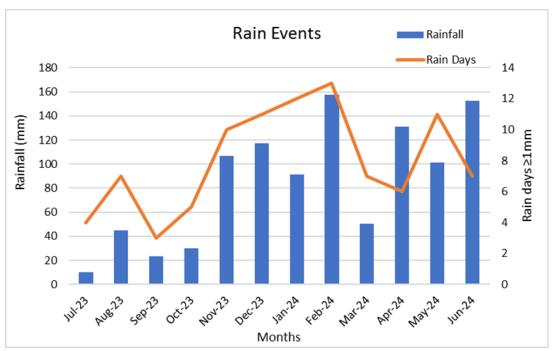
The BAM tool provides a consistent method for assessing improvements in biodiversity values from management actions undertaken at a specific site. These are quantified by the

calculation of biodiversity credits. This tool is more useful once a vegetation community is established as it assessed its condition and value based on the calculation of credits.

The RVA method provides a visual reference over time which can be used for comparison with both the EFA and BAM results. It also provides a wider view of the monitoring sites which can better detect high level changes such as weed growth, vegetation health and disturbance.

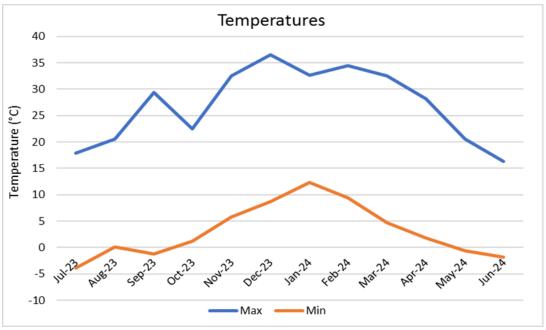
Rehabilitation activities have been underway at the Marulan South Limestone Mine for several decades. The rehabilitation program will run over the 30 year approved life of mine and until such time as the final land use completion criteria have been satisfied. Rehabilitation monitoring is required to demonstrate that the completion criteria are on a trajectory to be met within the required timeframe set by the approval process.

1.4 GEOGRAPHIC SETTING


The Marulan South Limestone Mine site and surrounds are characterised by rolling hills of pasture interspersed with forest to the west, contrasting with the heavily wooded, deep gorges that begin abruptly to the east of the mine, forming part of the Great Escarpment and catchment of the Shoalhaven River. The mine is separated from the Bungonia National Park and State Conservation Area to the south by Bungonia Creek and is separated from the Shoalhaven River and Morton National Park to the east by Barbers Creek. The site is characterised into two key vegetation communities namely, native Brittle Gum Stringybark Forest located to the west, and Coastal Grey Box Forest Red Gum Woodland situated to the east.

1.5 CLIMATIC CONDITIONS

A common component of rehabilitation success and the health of undisturbed vegetation communities within the mine site is climatic conditions. Although not specifically a component of any of the vegetation monitoring methods, prevailing weather conditions are often a factor used in describing potential causes of poor vegetation growth and vigour, site erosion and presence of seedlings.


The site is located in Australia's cool, temperate climatic region, which typically has low winter rainfall and temperatures as well as high intensity summer storms. It is also subject to drought conditions which can impact vegetation communities. Weather data is obtained from the Marulan South Meteorological Station. Annual rainfall data is presented in Graph 1.1.

A total of 1016.6mm of rainfall with 96 rain days was recorded at the site weather station during the financial year. This was lower than the previous reporting period that recorded 1614mm with 149 rain days, but higher than the annual average with intense storm events. Rainfall was highest during February 2024 with 157.4mm and was the lowest in July 2023 with 10mm. The number of rain days ranged from 3-13 days per month.

Graph 1.1- Monthly rainfall and number of rain days

Temperatures were hottest in summer months with the highest maximum of 36.5°C in December 2023 and were coldest during the winter months with a lowest minimum of -3.9°C in July 2023 (Graph 1.2). Frosts are common in the June to July period. The average maximum and minimum temperatures for the financial year were 27°C and 3.0°C respectively, which were higher maximums and minimums than recorded in the previous period.

Graph 1.2– Monthly Minimum and Maximum Temperatures

Overall, the rainfall and temperature data for the reporting period were within the long term average and would therefore not form a constraint to either existing vegetation communities or rehabilitation areas.

1.6 SUMMARY OF RESULTS

The November 2024 Ecosystem Function Analysis reports on the 7th round of monitoring conducted at the Mine. The EFA monitoring found that overall rehabilitation has been successful but has identified areas of improvement and corrective action which should be considered. This predominantly includes planting of native tubestock species and weed control. The study has also found the surrounding native vegetation communities are highly disturbed and not necessarily representative of the target ecosystem quality that should be sought in the rehabilitation areas.

This report provides the results of the second Rapid Visual Assessment undertaken under the Marulan South Limestone Mine Biodiversity Management Plan. No significant changes were observed at the monitoring locations over the last 12 months. Key recommendations which have been made include removal of mine rubbish, further implementation of a feral animal control plan (with a particular focus on deer) and treatment of *Nassella trichotoma*. The recommendations made will form part of the overall management of rehabilitation work at the mine.

The BAM monitoring concludes that the remnant vegetation surrounding the mine is of a moderate health condition. As this was the first round of BAM monitoring at these vegetation zones, no temporal comparative data was available. Natural regeneration of native canopy and shrub species is occurring in all BAM plots, which will contribute to progress towards benchmark scores. At this stage, these areas of remnant vegetation remain undisturbed, with minor actions of weed management targeting high threat weeds including *Nassella trichotoma* to be implemented. Continuing BAM monitoring on a biennial basis will provide ongoing information regarding the health and any changes to the remnant vegetation on site.

2. ECOSYSTEM FUNCTION ANALYSIS (EFA)

2.1 OVERVIEW

The Ecosystem Function Analysis method is a rapid visual field assessment of a range of indicators (such as litter cover, bare ground, vegetative cover, vegetation height, floristic diversity, etc) to assess the biogeochemical functioning of landscapes. These features reflect the ability of the ecosystem to uptake, retain and recycle nutrient resources, which indicates the functionality of the ecosystem.

The EFA is based on numerical ratings and percentages which is a robust method to be used for statistical comparisons, allowing the function of the site to be tracked over time. This also enables the site to be compared to a reference site of an extant ecosystem. Comparisons can indicate if rehabilitation works are satisfactorily progressing an area towards becoming a self-sustaining ecosystem. It will also be possible to predict when an ecosystem has achieved sufficient functionality to become sustainable in the long term.

Analysis of EFA data will inform decisions about ongoing management and maintenance of rehabilitation areas and will identify problem or 'under-performing' areas at an early stage.

The Ecosystem Function Analysis is separated into the following three components which are designed for joint implementation:

	Landscape Function A	nalysis (LFA) is the original core procedure.
_	Vagatation Dynamics	The functional role of vegetation etructure and

- □ Vegetation Dynamics The functional role of vegetation structure and composition.
- ☐ Habitat Complexity An assessment of the development of vertebrate habitat.

2.1.1 Objectives

An EFA survey is conducted annually to monitor rehabilitation progression at MSL as a means for determining if the required rehabilitation objectives are being met. Accurate and detailed site records incorporating EFA will be maintained for future reference and to provide a benchmark for evaluating the success of the rehabilitation works. EFA methods provide the necessary records and assessment of the vegetation community health, structure, natural succession and species diversity. The objectives of this monitoring program are to:

Track the progress of rehabilitation works using measurable ecosystem function scores	s to
identify trends and identify success and failures;	

- ☐ Identify rehabilitation programs or areas that are failing or under-achieving at an early stage, so that prompt remedial actions can be undertaken, and to provide information to guide subsequent rehabilitation works within the site; and
- ☐ Predict when rehabilitated land has become stable with self-sustaining ecosystems, such that ongoing management can cease.

2.1.2 Success Criteria

The progressive indicator measurements are compared against the success criteria to ascertain if rehabilitation objectives are being met. The Project Site's success criteria (or closure criteria) for the rehabilitation areas on the site have been determined based on the proposed final land use of woodland / grassland mosaic. These have been re-produced in Table 1.1.

Table 1.1- Rehabilitation Success Criteria

Rehabilitation Element	Indicator	Criteria
Topsoil	Growth Medium Development	Where used, topdressing material (meeting EC, pH and ESP criteria) placed as per erosion risk: Low risk: 10cm depth topdressing material. Mod risk: 10 cm depth good quality topsoil. High risk: Rock / soil mulch or suitable ameliorant.
	Nutrient Cycling	Nutrient accumulation and recycling processes are occurring showing the presence of a litter layer, mycorrhizae and/or other microsymbionts. Adequate macro and micro-nutrients are present.
Vegetation	Land Use	Area remains as healthy native woodland or a sustainable grazing pasture.
	Surface Cover	Minimum of 70% vegetative cover is present (or 50% if rocks, logs or other features of cover are present). No bare surfaces >20 m ² in area or >10 m in length down slope.
	Species Composition	Subject to proposed land use, comprise a mixture of native trees, shrubs and grasses representative of regionally occurring woodland where possible.
	Resilience to Disturbance	Established species survive and/or regenerate after disturbance. Weeds do not dominate native species after disturbance or after rain. Pests do not occur in substantial numbers or visibly affect the development of native plant species.
	Ecosystem and Land Use Sustainability	Species are capable of flowering and setting viable seed. Evidence of second-generation shrub and understorey species. Vegetation develops and maintains a litter layer as a consistent mass and depth of litter over subsequent seasons. More than 75% of shrubs and/or trees are healthy when ranked healthy, sick or dead.
	Relinquishment	Sufficient monitoring evidence to indicate woodland community exhibiting essential ecosystem processes, landform stabilisation, habitat enhancement and visual screening.

The above criteria will develop further as subsequent Rehabilitation Strategy documents and related management plans are produced.

2.2 METHODOLOGY

2.2.1 Reference Sites

A reference site is located nearby in a fully functioning ecosystem to represent as close as possible the slope, aspect, soils, and proposed vegetation characteristics of the rehabilitation areas. Unfortunately, the vegetation surrounding the mine site has also suffered from a history of agricultural disturbance and is not truly representative of the original vegetation community that would have been present prior to European settlement.

The reference site chosen has a relatively sparse understory of native plants and a shortage of old growth canopy trees. There is a thick layer of leaf litter on the soil surface and a moderate canopy predominantly of Eucalyptus species. The midstorey is open, with a scatter of native shrubs which are dominated by *Olearia viscidula*. This site was historically described as being Brittle Gum Stringybark Forest.

The reference site provides helpful data for the LFA component of this study, although improved vegetation dynamics would be expected for the rehabilitated sites.

2.2.2 Landscape Function Analysis (LFA)

Landscape function refers to the ability of the biophysical landscape to capture and retain resources such as soil, water and nutrients. Landscapes with a higher functional value can capture and conserve resources to be used within the system.

Landscape Organisation Index

The landscape organisation index (LOI) records data for a site along a 50m long transect running directly downslope in the direction of water flow, which is used as a representative of the site. The transect is marked with stakes and the same line is used on each monitoring occasion.

A continuous record of the patch and interpatch lengths, widths and types is recorded along the transect. A patch can be defined as a long-lived feature in which resources tend to accumulate. Patch types can include grass swards, rocks > 10 cm, or tree branches in contact with the soil. The term interpatch refers to the bare ground between patches, where the resources flow more freely and can be lost.

The Landscape Organisation index is then recorded by dividing the length of patches by the length of the transect (50m).

Soil Surface Assessment (SSA)

The quality of patch and interpatch types are measured by a Soil Surface Assessment. The following eleven soil surface assessment indicators are tested at each patch/ interpatch type:

- Rain splash Protection- is an assessment of the amount of physical surface and plant cover to prevent the effect of raindrops impacting the soil. This indicator relates to the Stability Index.
- 2. <u>Perennial Vegetation Cover</u>- is an estimation of the basal cover of perennial grass and canopy cover of shrubs and trees. This indicates the below-ground biomass and its contribution to nutrient cycling and water infiltration.

- <u>Litter Cover</u>- The percent of cover litter and depth (when 100% cover) is assessed and relates to the nutrient cycling index. The origin of the litter is then classed as local or transported, and the degree of decomposition/incorporation is classed as nil, slight, moderate or extensive.
- 4. <u>Cryptogram Cover</u>- refers to the percentage cover of algae, fungi, lichen, moss and liverworts. This indicator relates to both soil stability and nutrient cycling.
- 5. <u>Crust brokenness</u>- is ranked as a class 0 to 4. A broken crust is more available for erosion.
- Soil Erosion Type and Severity- is a measure of the type and severity of recent soil loss.
 Erosion present can be classed as rills/gullies, terracettes, sheeting, scalding or
 pedestalling.
- 7. <u>Deposited Materials</u>- is a measure of the amount and type of recently transported material deposited. This can include litter, soil and gravel and is an indicator of soil stability.
- 8. <u>Soil Surface Roughness</u>- allows for the soil to capture and retain resources such as water, propagules, topsoil and organic matter which is linked to infiltration and nutrient cycling.
- 9. <u>Surface Resistance to Disturbance</u> measured by mechanically disturbing the soil to observe the ease of disturbance. This shows the ease of release of erodible material.
- 10. <u>Slake Test</u>- assesses the stability of soil fragments to rapid wetting. Stable soil fragments will maintain cohesion when wet.
- 11. <u>Soil Texture</u>- is classified as a combination of silt, clay and loam which is related to permeability and thus infiltration.

A detailed methodology of the soil surface assessment indicators is provided in the LFA Manual (Tongway and Hindley, 2004). The soil surface indicators are all classed as ranks, which are used to calculate the three key landscape function indices, being stability, infiltration and nutrient cycling.

2.2.3 Vegetation Composition and Dynamics

Vegetation is crucial for habitat, food and shelter for native fauna, and plays a functional role in the control and cycling of resources. Similar to the LFA, the vegetation dynamics is assessed using numerical values, often percentages, for ease of comparison and statistical analyses.

Vegetation data is recorded using the same transects as the LFA. A grid is formed by spacing 2m each side of the transect at 5m intervals, making a total of ten 4x5m quadrants. Within each quadrant, a 1m² grid is used in the top left and bottom right corner to calculate the following:

% cover of combined lower stratum vegetation (all plants with height < 0.5m);
% cover of combined lower stratum vegetation (all plants with height 0.5m-1.0m)
% cover of litter; and
% cover of bare ground.

Lower Stratum

The lower stratum is defined as 0 to 1m from ground level. Within each quadrant, the following lower stratum data is recorded:

	Inventory of all species; List key species; and Growth type (annual/perennial) of all species.
The as par	ddle and Upper Strata e middle stratum is defined as 1 to 3m from ground level, and the upper stratum is defined above 3m. These two vegetation levels will be combined during the EFA. The following rameters is recorded in each quadrant to provide an estimate of the canopy cover, height d composition of the transect:
	Record of all species present; Count stem densities per species; Canopy cover presence/absence, and if present Species contribution; and Mid or upper stratum.
2.2	.4 Habitat Complexity
var ran	e Habitat Complexity module surveys the extent of available niches (habitat and shelter) for ious vertebrate fauna. The greater the diversity, or complexity of habitat, the greater the ge of fauna species likely to utilise the habitat, and the greater the robustness of the osystem. Habitat complexity is scored from 0 to 3 on the following five features:
	Canopy Cover; Shrub Cover; Ground Vegetation Cover; Amount of litter, fallen logs, rocks; and Free water availability
	e area assessed is 10 to 20m in radius based on sight distance, centred at the middle of the middle of the transect used for the LFA and Vegetation Dynamics. The total score of the five features

50m transect used for the LFA and Vegetation Dynamics. The total score of the five features indicates the final Habitat Complexity Score which can be compared across sites and time.

2.3 PHOTOGRAPHIC MONITORING

Photographic monitoring is recorded during each survey at the beginning of each transect. The photo is taken from the same position, with the camera leaning on the top of the star picket looking down the transect at a ground to sky ratio of 5:1. This enables visual comparisons to be made across survey periods. Photos of each patch-interpatch type is also be recorded to allow for consistency of descriptions over time. The photographic record for each site is provided below.

2.3.1 Photographic Record Site 2

April 2021

December 2021

May 2022

November 2023

November 2024

2.3.2 Photographic Record Site 3

April 2021

December 2021

January 2023

November 2023

November 2024

2.3.3 Photographic Record Site 4

April 2021

December 2021

May 2022

January 2023

November 2023

November 2024

2.3.4 Photographic Record Site 5

2.3.5 Photographic Record Reference Site

July 2020

April 2021

December 2021

May 2022

November 2024

2.4 RESULTS AND DATA ANALYSIS

2.4.1 Rehabilitation Monitoring Sites

Below in Table 2.1 is a description of the monitoring locations which are shown in Plan 1. These are based on the previous MOP domain plans but have been kept for consistency.

Table 2.1- Transect Description

Transect	Landscape Position	Comments
Reference 1 (R1)	South-West of the WOE	Has not been disturbed by mining activities
T2	South of the active area within	Flat ground with groundcover of weed
	the WOE, Domain 7.1w in the	species and older monoculture of Acacia.
	2018-2023 MOP	Rehabilitated in 2005.
T3	Far south of the WOE Domain	Rehabilitation occurred in 2017. Many
	7.1w in the 2018-2023 MOP	Acacia with juvenile Eucalyptus and
		Allocasuarina. Many weeds present.
T4	Second bench of Bryces Dump	Stable slope, high vegetation cover is
	Domain 7.3e in the 2018-2023	mostly weeds, moss and dying Nassella
	MOP	trichotoma. Rehabilitated in 2019/2020
T5	WOE - first bench, Domain	Transect established April 2021.
	4.1w in the 2018-2023 MOP	Rehabilitation trial conducted January
		2019. High grass and broadleaf weed
		density with increased Acacias down low.

Site 2

The transect at Site 2 (T2) is located immediately to the south of the WOE and is directly below the active rehabilitation areas. The site is mainly comprised of very gently inclined to gently inclined land (3-10%) with a stable soil surface and no visible erosion. This rehabilitated zone is approximately 0.85 ha and the transect is positioned in the centre of the area in a NW to SE direction.

Rehabilitation was conducted in 2005, in which the area was sprayed to control weeds and deep ripped prior to direct tree seeding. The seed mix was treated with heat, scarified, dried and mixed with fertiliser before use.

The vegetation can now be described as a monoculture of *Acacia mearnsii* which appear to be heading toward the end of their lifespan, and some older trees had fallen over. Groundcover is dominated by a dense layer of broadleaf weeds and grasses, particularly *Echium plantagineum* (Paterson's Curse), *Onopordum acanthium* (Scotch Thistle) and *Plantago lanceolata* (Ribwort Plantain).

Site 3

The transect at Site 3 (T3) is positioned on a bank at the far south of the WOE, adjacent to the native woodlands. The transect spans from the dirt road at the top of the bank to the edge of the native woodlands at the bottom. This transect is representative of the rehabilitation conducted on the western overburden emplacement in February 2017. Revegetation was done by direct seeding. This involved hydroseeding using the following mix:

■ Mulch Wood fibre cellulose 2 tonnes/ha

	Seed
	 Cover Crop of Rye corn / Jap Millet 35kg/ha
	 Acacia species 7kg/ha
	Eucalyptus Species 3kg/ha
	Fertilizer Dynamic lifter 250kg/ha
П	Binder Envirotack 40kg/ha

Bundles of large fallen logs, bark and other organic material were positioned on the slope to improve habitat complexity. This area is comprised mostly of *A. decurrens* with a scatter of other acacia species, juvenile eucalypts and allocasuarina species. The lower half of the transect down-slope is dominated by weed species, particularly *Hirschfeldia incana* (Shortpod Mustard). Weed cover is slowly taking over the bare patches on the lower half of the site. A small amount of rilling is present although no sediment problems are evident.

Site 4

This site is the only site currently located on the eastern side of the mining area, and therefore will be rehabilitated to a native Coastal Grey Box Forest Red Gum Woodland community. Transect 4 (T4) is located on the first bench of Bryce's Gully in a NE to SW direction. This site is exceptionally steep, with an average incline of 56 to 100% (classed steep to very steep) and benches with a slope range of 32-56% (moderately inclined to steep). The embankments are stable with little sedimentation evident from runoff and clear drainage lines.

Rehabilitation was conducted during the 2019-2020 reporting period. Activities included weed spraying with a focus on *Nassella trichotoma*, direct seeding and tubestock planting on the benches. Tubestock were fenced to prevent grazing and are watered using an irrigation system. Spraying of noxious weeds occurs when required, and hand pulling of weeds competing with the tubestock in the cages is conducted annually. So far approximately 50% of the tubestock have survived although show signs of disease or possible stress from too much water or nutrient deficient. There is good vegetation cover at this site with lots of annual weeds holding the soil together, limited perennial weeds and some native ground covers emerging.

	nual seeding focussed on the drainage lines during gullies in which a mix of the following	The	e tubestock species planted included
pasture species were used:			Lomandra longifolia
			Eucalyptus Viminalis
	Japanese Millet		Eucalyptus macrochyncha
	Ryecorn/Oats		Eucalyptus Eugenoides
	Rhodes grass		Eucalyptus melliodora
	Couch Grass		Eucalyptus bosistoana
	Wimmera Ryegrass		Allocasuarina littoralis
	White Clover		
	Lucerne		
	Sub Clover		

Site 5

The Transect at Site 5 (T5) was established in April 2021 and is situated on the next completed bench to the northwest of Site 2 on the southern side of the WOE. This area was ripped and sprayed with a standard hydro-mulch fibre spray media including sterile ryegrass and couch cover seed mix (see Table 2.2) to improve the soil conditions and enhance the

microclimate. No additional topsoil was spread on this area, although a small amount of topsoil may exist from when the site had previously been subject to unsuccessful revegetation efforts. These rehabilitation works were commenced in January 2019.

Currently, the top half of the transect has a dense cover of grass and weed species. The predominant species are *Chloris gayana* (Rhodes Grass) and *Cynodon dactylon* (Couch Grass), and the dominant weeds include *Hirschfeldia incana* (Shortpod Mustard) and *Plantain lanceolata* (Ribwort Plantain). Further downslope in the southern direction, dense *Acacia mearsii* (Black Wattle) are growing up to approximately 3 metres tall. More rehabilitation work is planned for this site, including planting of native tubestock of a range of Eucalypt and Casuarina species.

A total of three rehabilitation trials have been conducted along this bench, with two additional trials conducted to the west of T5. Work at these two sites was more recently conducted during mid-2020. These sites may be included in the monitoring program once the rehabilitation work progresses in these trials.

The trial site (5b) directly to the west of T5 was ripped in Spring 2020 and treated with a hydro-mulch using *proganics dual* with ryegrass and couch cover seed mix as per Table 2 below. The majority of this area was spread with topsoil some time before the trial, although there is a smaller area to the west where there was no topsoil added.

The furthest trial site (5c) along the bench in a north-west direction was sprayed with hydro-mulch using Flexterra FGM with ryegrass and couch cover seed mix (see Table 2.2) in August 2020. No ripping or topsoil was added to this area. At present, a dense layer of grass and weed cover is maintaining a stable bench to prevent loss of organic matter and moisture.

Table 2.2 Ryegrass and Couch Cover Seed Mix

Seed Type	Species Name	Amount (Weight)
Grasses	Austrodanthonia spp	2kg
	Microlaena stipoides	2kg
	Chloris spp	2kg
	Themeda australis	2kg
Shrubs	Acacia falcata	0.3kg
	Acacia decora	0.5kg
	Acacia decurrens	0.5kg
	Acacia mearnsii	2kg
	Acacia rubida	1kg
	Acacia ulicifolia	0.3kg
	Dodonaea viscosa	1kg
	Hardenbergia violacea	0.5kg
	Indigofera australis	2kg
	Leptospermum obovatum	0.1kg
	Kunzea parvifolium	0.1kg
	Daviesia ulicifolia	0.2kg
Trees	Eucalyptus blakelyii	0.3kg
	Eucalyptus melliodora	0.3kg
	Eucalyptus mannifera	0.3kg
	Eucalyptus viminalis	0.3kg
	Allocasuarina littoralis	0.3kg

Reference Site

The Reference site is situated to the South-West of the WOE. The transect is situated in an ESE to WNW direction. This area has not been disturbed by mining activities, however the quality of this vegetation community has been compromised by an assumed history of disturbance which occurred approximately 25 years ago. This has led to a relatively sparse understory of native plants and a lack of old growth canopy trees. There is a thick layer of leaf litter on the soil surface and a moderate canopy predominantly of Eucalyptus species. The midstorey is open, with a scatter of native shrubs, predominantly *Olearia viscidula*. This site has been described as being Brittle Gum Stringybark Forest. The site is characteristic of a closed woodland with a sparse shrub layer and dominated by *Eucalypt obliqua*. The site contains a complete layer of litter and provides good ground habitat with logs, branches and very little weeds present. The soil is stable with full organic matter and humic in nature with good ground biology including ants, termites, mushrooms and liches. There is previous evidence of a cooler burning fire on tree bark and evidence of regrowth in the shrub layer. Older large trees are present with hollows suitable for habitat of larger birds and arboreal mammals. No erosion is evident whatsoever at the reference site.

2.4.2 Landscape Function Analysis

Table 2.3 Patch/interpatch Types and Descriptions

Patch Type	Description/Comments
Shrub (S)	Patches ranged up to 1.5m in height and were characteristic of native
	plant growth. This category also includes native juvenile tubestock.
Weed (W)	Comprised individual and thickets of exotic species which were not
	planted during rehabilitation.
Niche (N)	Includes fallen logs, piles of bark and debris which can enhance habitat
	structure.
Log (L)	Includes a single log, often partially buried in the soil which has not
	accumulated additional debris.
Moss (M)	Patches have been present in T2, T4 and the reference site.
Leaf litter (LL)	Can include from Acacia leaves, Eucalypt leaves, small branches and
	dead and decomposing tussock grass.
Grass (G)	Often reflective of improved pasture species which had been sown as a
	cover crop.
Bare ground	Interpatch type which consists of overburden material. A high
(BG)	composition of rocks is evident and hydro-mulching material has been
	added to the surface to improve soil structure at some sites.

Field surveys involved the collection of patch/interpatch and soil surface condition data for each transect. This data is used to calculate the landscape organisation, soil stability, infiltration and nutrient cycling indices. The landscape organisation and soil surface assessments are most useful when compared over time, during subsequent monitoring surveys.

Landscape Organisation Index (LOI)

The summary statistics for the LOI method are presented in Table 2.4. Not every patch type was present in each selected transect site. The reference site had the greatest variety including 6 different patch types in total.

Bare patches were predominantly absent from the transects in November 2024, but small bare patches still remained at all sites. Bare patches were most prevalent in T5, which accounted for 10% of the landscape. Increased bare ground was noted at T2 due to the animal track running along the marked transect from 35m to the 50m mark. All sites had Landscape Organisation Indices (LOI) above 90%, with the highest being 98 at T4. This suggests that these sites represent highly functional landscapes.

The transects are now typically composed of a higher proportion of weed cover and grasses which minimises the proportion of bare ground to produce a high index. Minor annual herbaceous ground cover weeds are not considered overly concerning as they will not compete with the growth of native plant species, they will add to the organic biomass following their death, and they protect the soil from erosive forces. Increased weed cover has grown following the high rainfall over the past twelve months, further improving the LOI for these sites in November 2024. Perennial weeds or persistent annual weed infestations can however provide a risk to the establishment of native groundcovers and shrubs.

Transect 4 had the largest patch area and patch area index. This is because the areas of grass and weed cover spanned for increased widths, over 10 metres in some cases. Transect 4 has an average of 3.6 patch zones over 10 metres, which was a smaller number of patch zones compared to transects at other rehabilitated sites.

The percentage of weed patches increased at T2 and T5 over the past 12 months. There has also been an increase in leaf litter at sites T3 and T5. Since patches are known to retain resources, a high total patch area (m²) can indicate that there are large areas within a site which are capable of conserving water, nutrients and soil. Such patches can be called 'fertile zones'.

The average interpatch length is an important calculation as it represents the distance of unobstructed resource transport as runoff. The average interpatch length declined over the past 12 months due to increased herbaceous weed and grass growth.

The average interpatch length was lower than the reference transect for several rehabilitated sites. The average interpatch length at the reference site was 0.66 and distances lower than this would imply that the momentum of overland flow is low, and resources will not be transported far out of the site. Shorter interpatches suggests that there are more patches available to capture resources. The shorter interpatch lengths would prevent increased erosive forces.

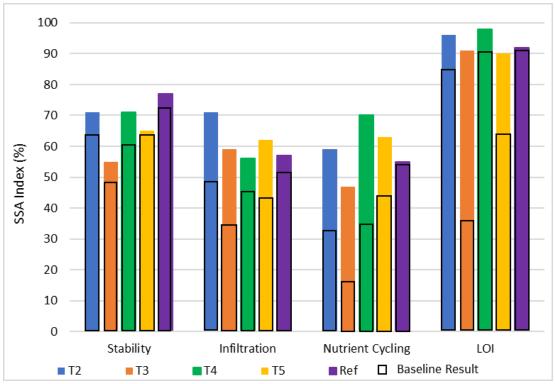
Table 2.4- Summary of LOI Results

July 2020	T2	T3	T4		Reference
Patch Zones (number/10m)	11.6	3.2	8.6		9.0
Number Patch Types	3	4	6		6
Total Patch Area (m²)	45.4	149.3	42.4		176.8
Patch Area Index	0.09	0.3	0.08		0.35
Mean Interpatch Length (m)	1.04	2.29	0.83		0.63
Interpatch Range (m)	0.1-5.0	0.5-7.0	0.5-1.5		0.3-1.3
Landscape Organisation Index	0.85	0.36	0.9		0.772
April 2021	T2	T3	T4	T5	Reference
Patch Zones (number/10m)	5.6	3.2	11.4	6.0	6.4

Number Patch Types	3	4	6	3	6
Total Patch Area (m²)	116.3	295.9	27.9	97.2	198.2
Patch Area Index	0.24	0.59	0.06	0.19	0.4
Mean Interpatch Length (m)	0.60	2.78	1.10	1.08	0.82
Interpatch Range (m)	0.1-3.0	0.4-7.6	0.3-2.5	0.2-5.0	0.1-1.8
Landscape Organisation Index	0.93	0.33	0.87	0.66	0.92
December 2021	T2	T3	T4	T5	Reference
Patch Zones (number/10m)	6.4	3.6	13.8	8.4	6.4
Number Patch Types	4	4	5	4	6
Total Patch Area (m²)	258.9	242.8	54.3	131.1	182.9
Patch Area Index	0.52	0.49	0.11	0.26	0.37
Mean Interpatch Length (m)	0.10	2.13	0.42	0.78	0.80
Interpatch Range (m)	0.4-7.5	0.7-5.0	0.2-0.6	0.2-2.2	0.5-1.0
Landscape Organisation Index	1.0	0.45	0.96	0.78	0.92
May 2022	T2	T3	T4	T5	Reference
Patch Zones (number/10m)	8.0	6.6	10.4	7.4	7.0
Number Patch Types	5	4	5	5	6
Total Patch Area (m²)	69.4	121.1	59.4	174.1	179.2
Patch Area Index	0.14	0.24	0.12	0.35	0.35
Mean Interpatch Length (m)	0.14	0.24	0.12	0.52	0.78
Interpatch Range (m)	0	0.30	0	0.1-1.1	0.76
	1.00	0.2-2.3	1.00	0.1-1.1	0.1-1.3
Landscape Organisation Index January 2023	T2	T3	T4	T5	Reference
Patch Zones (number/10m)	4.6	5.6	5.8	3.2	3.8
Number Patch Types	4.0	4	4	5.2	6
Total Patch Area (m²)	161.7	260.6	211.9	636.1	210.0
Patch Area Index	0.32	0.52	0.42	1.68	0.80
Mean Interpatch Length (m)	0.32	1.05	0.42	0.7	0.75
Interpatch Range (m)	0	0.2-2.6	0.5-1.7	0.7-1.3	0.73
Landscape Organisation Index	1	0.2-2.0	0.98	0.7-1.3	0.94
November 2023	T2	T3	T4	T5	Reference
Patch Zones (number/10m)	3.0	2.4	2.8	3.2	2.6
Number Patch Types	4	4	4	4	6
Total Patch Area (m²)	163	175.5	176	621.5	185.0
Patch Area Index	0.33	0.35	0.35	1.70	0.31
Mean Interpatch Length (m)	0.33	3.38	0.55	0.6	1.50
Interpatch Range (m)	0	0.5-4.0	0	0.5-1.0	1.5-1.5
Landscape Organisation Index	1	0.3-4.0	1	0.99	0.97
November 2024	T2	T3	T4	T5	Reference
Patch Zones (number/10m)	7.2	5.6	3.6	7.4	4.8
Number Patch Types	4	4	5	4	5
Total Patch Area (m²)	132.3	102.9	122.1	61.5	330
Patch Area Index	0.26	0.21	0.30	0.12	0.66
Mean Interpatch Length (m)	2.2	1.1	0.50	0.12	0.66
Interpatch Range (m)	2.2	1-1.2	0.4-0.8	0.5-1.4	0.66
Landscape Organisation Index	0.96	0.91	0.4-0.6	0.5-1.4	0.4-1.3
i Lanuscade Ordanisadon index	I U.30	U.J	U.30	I U.JU	I U.JZ

Soil Surface Assessment (SSA)

Minimal changes to soil characteristics were measured in November 2024. Soil structure takes many years to develop and it takes many years for a soil type to change its composition.


Patches of grass, moss and weeds presented the highest soil stability index. They act as obstructions for slowing down and capturing overland flow, providing soils with physical stability and thus preventing subsequent erosion. Bare ground patches had the lowest stability index predominantly due to the absence of rain splash protection. The stability indices of each site were strongly associated with the proportion of different patch types.

Site 2 and 4 had the highest stability index both with scores of 71 (Graph 2.1). These sites are characterised by an extensive, localised layer of litter, high rain splash protection and a high presence of vegetative and biological cover. Site 3 had a lower stability rating of 55.6% due to the lack of cover (vegetation, litter and biological) and evidence of erosion. The moss which was identified at Site 3 last year has died off due to the dry conditions over recent months.

A high infiltration index was predominantly characterised by litter cover and decomposition, basal vegetation cover and physical soil attributes (texture, slake, dry coherence). Naturally, vegetation and litter patches contributed to the highest scores. Infiltration scores improved considerably at Site 3, reaching 62% due to acacias continuing to fill out in the first half and increased density of weeds in the second half of the transect in November 2024. Scores across all sites were similar to, or higher than the reference site (57%), although since this is a relatively low score, it is expected that Infiltration can still be improved further at the rehabilitated sites.

The highest nutrient cycling SSA indices were achieved by vegetated patches including grasses, shrubs, weeds, moss and litter, which will contribute to soil surface nutrients when broken down. Localised litter cover with a high decomposition improved the score because nutrients are effectively being returned to the soil. Low basal cover including bare ground and rock allows for resources to be lost in contrary to being filtered into the substrate. Only small improvements in nutrient cycling indices were recorded in November 2024, since only little changes were recorded for the overall soil assessment.

The LOI is a good indication of vegetation cover and is related to the SSA parameters. The proportion of bare ground is now negligible at all sites due to increased native ground cover, annual weed growth and increase leaf litter. Although improvements have been observed, it is recommended that the LOI is improved a little more to reach a similar score to the reference site. This can be done by minimising the proportion of bare ground on the site by increasing vegetation cover through planting and seeding methods.

Graph 2.1- Soil Surface Assessment Index (%) Baseline result= July 2020 (April 21 for T5)


Vegetation Composition and Dynamics

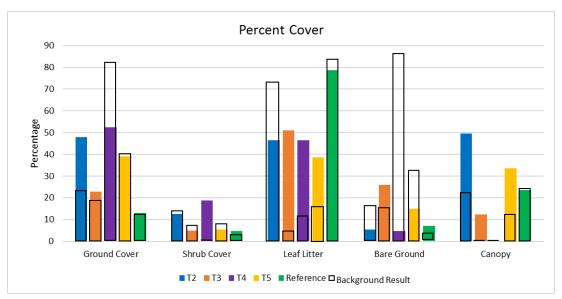
The number of groundcover species was the highest strata level for each site, with species numbers ranging from 16 to 30 groundcover species per transect (Graph 2.2). The majority of groundcover plant species (57% to 95%) were weeds as shown on Table 2.5 below. Across all sites, the most common weed species were *Hirschfeldia incana*, *Plantago lanceolate*, *Nassella trichotoma* and *Cirsium vulgare*. Common pasture species included *Trifolium* sp, *Cynodon* sp, *Phallaris* sp and *Lomandra*. As expected, the reference site had the highest number of native groundcover species, including *Pomax umbellate*, *Patersonia occidentalis*, and *Vicia tetrasperma*. Site 4 had the highest diversity of groundcover, with a total of 30 species. Species richness has also improved at Site 3 over the past year. As previously discussed, herbaceous weed species will not have detrimental effects on the ecosystem.

The reference site shows that the native vegetation resembles an open woodlands ecosystem where mid-storey cover is sparse. Only four middle storey species were present in the reference transect, while two or three species were present in each of the rehabilitated transects. The middle storey of the reference transect was dominated by *Olearia viscidula*. Species richness of the reference site did not entirely represent a Brittle Gum Stringybark Forest as the middle and lower stories were disturbed. The reference site provides helpful data for the LFA component of this study, although improved vegetation dynamics would be expected for the rehabilitated sites.

The upper canopy at the reference site is characterised by mature *Eucalyptus mannifera* and *E. bosistoana* with the emergence of few juvenile *Acacia* and *Casuarina*. Meanwhile, Site 2 is comprised of a dense canopy of *A. decurrens* and *A. mearsii*, with the emergence of *E. cinerea*. Transect 3 and 5 are comprised of the same species, however rehabilitation work in these sites was more recent and all species are still at a juvenile stage. The dense

monoculture of *Acacia* trees does not reflect the natural reference site, and more care should be taken with species selection. It is suggested that planting of Eucalypt tubestock in these areas would improve diversity and species richness of canopy species to represent the reference site. This could be done progressively as the short lived Acacias naturally die off.

Graph 2.2- Species Richness at three levels of vegetation strata Baseline result= July 2020 (April 21 for T5)


Percent cover does not distinguish between weed cover and native vegetation as it is not necessarily a factor in protecting soil from erosion. Organic matter is important in the development of soil structure and fertility, and it is not necessarily relevant whether this material comes from native or non-native species. It also doesn't distinguish between species diversity and structure, however for long term sustainability the structural components should still match the reference vegetation community.

As shown on Graph 2.3, the reference site has a high canopy cover, but less ground and shrub cover and includes a significant proportion of leaf litter. Site 4 however, is predominantly ground cover and leaf litter, with vegetation increasing into the shrub layer, and has minimal tree layer at this stage. Over time as trees emerge, the groundcover will reduce, and the leaf litter layer should increase. There has been a reduction of groundcover at T4 due to die off of *Nassella trichotoma* which has contributed to a higher percentage of leaf litter.

Conversely, Site 3 is in the early stage of rehabilitation and shows improving ground cover and leaf litter cover, and percent cover has been increasing over time. Site 2 is an older rehabilitated area and has a higher canopy and leaf litter approaching the proportions observed in the reference site. There was greater shrub cover at T2, however this was predominantly weeds including *Cirsium vulgare*. A lowered percent canopy cover was also recorded at T2, as some acacias had started to fall as they reach the end of their lifespan. It is evident that the timing of rehabilitation of Site 5 lies between Site 3 and Site 2, with a fair amount of bare ground gradually being covered by lower storey species and litter, while the middle and upper storeys are still somewhat lacking.

It appears that over the past 12 months there has been a reduction in bare ground across all the rehabilitated sites, as ground cover species emerge and the leaf litter layer develops

further. The Landscape Function Analysis has deemed that the proportion of bare ground is now negligible at all sites.

Graph 2.3- Average ground, shrub, litter and bare cover percentages Baseline result= July 2020 (April 21 for T5)

Table 2.5- Transect Species List

Transect 2	Transect 3	Transect 4	Transect 5	Reference
		Weed species		
Sonchus asper	Plantain lanceolata	Verbena brasiliensis	Hirschfeldia incana	Euphorbia maculata
Plantago lanceolata	Medicago minima	Stachys byzantina	Sonchus arvensis	Euphorbia peplus
Erigeron bonariensis	Hirschfeldia incana	Erigeron canadensis	Sinapis arvensis	Gamochaeta sp
Centaurea Melitensis	Euphorbia peplus	Solanum nigrum	Plantago lanceolata	Hypochaeris glabra
Lactuca serriola	Hypochaeris glabra	Cirsium vulgare	Dittrichia graveolens	Asclepias fascicularis
Cirsium vulgare	Geranium molle	Sonchus asper	Erigeron bonariensis	Nassella trichotoma
Hirschfeldia incana	Atractylis cancellata	Marrubium vulgare	Sonchus Asper	Daucus carota
Silybum marianum	Modiola caroliniana	Dittrichia graveolens	Hypochaeris glabra	Erigeron bonariensis
Rumex acetosella	Erigeron bonariensis	Geranium dissectum	Lythrum salicaria	Portulaca oleracea
Hypochaeris glabra	Erigeron canadaensis	Erigeron sumatrensis	Cirsium vulgare	Euchiton japonicus
Erodium moschatum	Sonchus Asper	Helminthotheca echioides	Helminthotheca echioides	Solanum nigrum
Erigeron canadaensis	Dodonaea viscosa	Sonchus oleraceus	Erigeron canadensis	Dichondra repens
Erigeron sumatrensis	Centaurea Melitensis	Plantain lanceolata	Dichondra repens	Verbena bonariensis
Sonchus oleraceus	Lactuca serriola	Machaeranthera tanacetifolia	Euchiton japonicus	
Gamochaeta coarctata	Cirsium vulgare	Scorzoneroides	Lythrum salicaria	
Verbena brasiliensis	Hypericum perforatum	Leontodon saxatilis	Erigeron canadensis	
Dichondra repens		Tetraneuris scaposa	Conyza bonariensis	
Solanum nigrum		Modiola caroliniana	Onopordum acanthium	
Portulaca oleracea		Andropogon virginicus	Anagallis arvensis	
Oxalis dillenii		Hypochaeris glabra		
Ageratina adenophora		Anagallis arvensis		
Tagetes minuta		Hirschfeldia incana		
		Improved Pasture Specie	es	
Trifolium repens	Trifolium repens	Trifolium repens	Trifolium repens	Poaceae sp.
Phallaris sp.	Phallaris sp.	Heteropogon contortus	Dactylis glomerata	Poa sieberiana
	Lolium sp.	Paspalum dilatatum	Cynodon dactylon	Cyperaceae sp.
	Cenchrus Clandestinus	Cynodon dactylon	Phallaris minor	Microlena spp
	Cynodon dactylon	Chloris gayana	Chloris gayana	

Transect 2	Transect 3	Transect 4	Transect 5	Reference
			Poa pratensis	
			Lolium	
			Festuca arundinacea	
		Native Understorey Sp	ecies	
		Lomandra Longifolia	Chrysocephalum apiculatum	Goodenia pinnatifida
			Unknown groundcover	Patersonia occidentalis
			Hardenbergia violacea	Chrysocephalum apiculatum
				Indigofera australis
				Hardenbergia violacea
				Vicia tetrasperma
				Vittadinia muelleri
		Mid to Upper Storey Sp	pecies	
Acacia decurrens	Acacia parramattensis	Pittosporum multiflorum	Dodonaea sp	Hakea sp.
Acacia mearnsii	Acacia falciformis	Pittosporum undulatum	Acacia decurrens	Eucalyptus eugenioides
Eucalyptus cinerea	Acacia mearnsii		Acacia mearnsii	Acacia sp. (juvenile)
Eucalyptus macrorhyncha	Acacia longifolia			Eucalyptus mannifera
-	Acacia decurrens			Eucalyptus bosistoana
	Allocasuarina littoralis			Ozothamnus diosmifolius
	Eucalyptus cinerea			Olearia viscidula
	Acacia parramattensis			Eucalyptus cinerea.
	Gleditsia triacanthos			Acacia decurrens
	Eucalyptus melliodora			Casuarina sp. (juvenile)

Habitat Complexity

Habitat complexity examines the extent of environmental niches, shelter and food resources available for vertebrate fauna. The reference site has a high habitat complexity index with a score of 9 (Table 2.6). This was comprised of a tree canopy of 30-70%, shrub canopy <30%, sparse ground herbs <0.5m, litter >70% and a permanent water body adjacent.

During November 2024, all sites were 'moist' with a sore of 1 following consistent rainfall in months prior to monitoring. Favourable conditions resulted in an increased tree and herb percentages at sites T2 and T3, while there was a decline in litter % from >70% to 30-70% at T2.

The entire lower and mid strata assemblage of all sites requires active rehabilitation. The vertical vegetation structure of an ecosystem plays a significant role in many positive feedback processes including stratum diversity providing increased habitat niches for a greater diversity of vertebrate species. As for the vegetation structure observed within Sites 2 and 5, although *Acacia* species can be used for successional development in a disturbed ecosystem, other components such as a seed bank must also be provided to enable to target succession to occur.

Habitat complexity can be easily improved in rehabilitation areas by the inclusion of brush matting such as logs, branches and debris. There is evidence of this having originally occurred in some of the rehabilitation areas, and this should improve over time.

Table 2.6- Habitat Complexity Woodland Scores

July 2020	2	3	4	5	Reference
Tree Canopy %	1	0	0		2
Shrub Canopy %	1	2	0		1
Ground Herb %	0	0	2		0
Litter %	2	1	0		2
Water	1	0	0		2
Habitat Complexity Index	5	3	2		7
April 2021	2	3	4	5	Reference
Tree Canopy %	2	0	0	1	2
Shrub Canopy %	1	2	1	1	1
Ground Herb %	2	0	2	3	1
Litter %	2	1	1	1	3
Water	1	0	0	0	2
Habitat Complexity Index	8	3	4	6	9
December 2021	2	3	4	5	Reference
Tree Canopy %	3	0	0	1	2
Shrub Canopy %	1	2	0	2	1
Ground Herb %	3	1	3	3	1
Litter %	2	1	1	1	3
Water	1	0	1	0	2
Habitat Complexity Index	10	4	5	7	9
May 2022	2	3	4	5	Reference
Tree Canopy %	3	0	0	1	2
Shrub Canopy %	1	2	1	1	1

A 111 1 0/	T 0	Ι 4	T 0		1
Ground Herb %	3	1	3	3	1
Litter %	2	1	1	1	3
Water	1	0	1	0	2
Habitat Complexity Index	10	4	6	6	9
January 2023	2	3	4	5	Reference
Tree Canopy %	3	0	0	1	2
Shrub Canopy %	2	2	1	1	1
Ground Herb %	3	1	2	3	1
Litter %	2	1	2	1	3
Water	1	0	1	0	2
Habitat Complexity Index	11	4	6	6	9
November 2023	2	3	4	5	Reference
Tree Canopy %	2	0	0	1	2
Shrub Canopy %	2	2	1	1	1
Ground Herb %	1	1	2	2	1
Litter %	3	2	2	2	3
Water	1	1	1	1	2
Habitat Complexity Index	9	6	6	7	9
November 2024	2	3	4	5	Reference
Tree Canopy %	3	1	0	1	2
Shrub Canopy %	2	2	1	1	1
Ground Herb %	2	2	2	2	1
Litter %	2	2	2	2	3
Water	1	1	1	1	2
Habitat Complexity Index	10	8	6	7	9

2.5 DISCUSSION AND RECOMMENDATIONS

2.5.1 General

The spring 2024 survey represents the seventh EFA monitoring round for Marulan South Limestone Mine. It covered both older revegetation areas, newly rehabilitated areas and the reference site which was characteristic of the surrounding native vegetation communities. The mine is undertaking progressive rehabilitation in accordance with the approved Rehabilitation Management Plan and Rehabilitation Strategy.

This EFA study found that overall rehabilitation activities have been successful but has identified areas of improvement and corrective action which should be considered over time. The study has also found the surrounding native vegetation communities are highly disturbed and not necessarily representative of the target ecosystem quality that should be sought in the rehabilitation areas. Further discussion and recommendations of the EFA findings can be found in the sections below.

2.5.2 Rehabilitation Success Criteria

The results of the EFA monitoring work as at November 2024 is provided in Table 2.7. The results show each site is progressing but have yet to meet the required success criteria.

Table 2.7- Rehabilitation Success Summary

Hierarchy of	Targeted	Key Performance	_		Satisfaction of the Criteria			
Ecosystem Succession	Ecosystem Components	Indicators		Site 2	Site 3	Site 4	Site 5	
Landform	Landform	LFA Stability	%	✓	Х	✓	Х	
Establishment	Function	LFA Infiltration	%	✓	Х	Х	Х	
		LFA Nutrient Cycling	%	✓	Х	Х	✓	
Growth	Active Erosion	Surface Area	m ²	Х	Х	✓	Х	
Medium	Soil chemical/	рН	pH (6.5)	-	Х	-	✓	
Development	Physical	Organic Carbon	% (>4.5)	-	Х	-	Х	
	properties	Nitrate	ppm (>12.5)	-	✓	-	Х	
		Total Phosphorous	ppm	-	Х	-	Х	
Ecosystem	Vegetation	Tree Density	Stems/area	Х	Х	Х	Х	
Establishment	Density	Shrub Density	Stems/area	Х	Х	Х	Х	
	Vegetation	Native Understorey	> Species /	Х	Х	Х	Х	
	Diversity	Diversity	m ²					
		Exotic Understorey	< Species /	✓	Х	✓	✓	
		Diversity	m ²					
Ecosystem	Groundcover	Perennial Plant Cover	%	✓	Х	✓	✓	
Development	Components	(<0.5m)		,				
		Total Ground Cover	%	✓	Х	✓	✓	
		4-6m height class	% Cover	Х	Х	Х	Х	
	Floristic	Native Species	> no. / area	Х	Х	Х	Х	
	Diversity	Diversity						
		Exotic Species	> no. / area	✓	✓	✓	✓	
		Diversity						
Ecological	Ecosystem	Healthy Trees	%	Х	Х	Х	✓	
Stability	Health		Population					

Ecosystem Recruitment	Shrub / Recruitment 0- 0.5m	no. / area	Х	Х	Х	Х
Ecosystem	Trees	no. / area	Х	Х	Х	Х
Composition	Shrubs	no. / area	Х	Х	Х	Х

2.5.3 Site 2

This site had a high LOI of 96. The ground cover was comprised of grass and weed species, litter and few bare ground patches remaining. The amount of bare ground had increased over the last 12 months due to an animal track running along the transect from about 35 metres. This site had moderate stability (71.7), infiltration (71.8) and nutrient cycling (59.0). The shrub stratum was dominated by a prolific weed cover of *Cirsium vulgare*, *Hirschfeldia incana* although it also included juvenile *Eucalyptus* species, particularly *Eucalyptus cinerea*. Canopy cover is present which is provided by the ageing *Acacia*, although the canopy cover percent dropped slightly in November 2024 because a few *Acacia* along the transect had fallen down. Site 2 had a high habitat complexity index of 10. This score has increased in tree canopy percent and ground herb percent due to favourable conditions over the last period. This site has a stable soil surface with no visible erosion. There are no native grasses in the understory vegetation and very few native herbs. There was no longer any moss visible at this site due to recent dry months. There was evidence of deers grazing on tree trunks as well as a potential resting area for kangaroos nearby. The trees are tall and slim, which indicates that they are likely competing for light.

Although the *Acacias* in this site are progressing towards the end of their lifespan, thinning out these trees and supplementing with *Eucalypts* tubestock would aid improvement of the species diversity. Some of the weeds present including *Tagetes minuta* and *Nassella trichotoma* are persistent perennials, and do need to be managed by spot spraying.

2.5.4 Site 3

Site 3 had a LOI score of 91 in November 2024. This index has improved significantly due to the *acacias* filling out in the upper half of the transect and the increased density of weeds in the lower half. This site had comparatively low stability, infiltration and nutrient cycling indices of 55, 59 and 47 respectively, however the soil surface indices have also improved over the past 12 months. The amount of bare ground has reduced significantly, from previous records of 50% bare ground to a current bare ground coverage of only 5%. The canopy cover percentage at Site 3 is still low, ranging from 0-20%, however the *Acacias* have grown taller into the >3m category and are beginning to fill the upper storey. Habitat complexity has a score of 8, however this has improved by two points. There are no sediment problems at this site and the soil surface is quite stable. A positive action undertaken at this site is that piles of logs and sticks have been clustered among the groundcover to create micro-niches to enhance shelter for smaller animals. In November 2024, the vegetation on the first 30 metres of the transect is very dense and a diverse species mix has established. There has been significant growth of the *Acacia* and Eucalypts in this area. The *Acacias* had seed pods, but no visual evidence of self-seeding at this stage.

This site represents more recent rehabilitation work and currently consists of juvenile *Acacias* and Eucalypts but with extensive weed infestation on the lower bank. The density of Eucalypts would indicate that a monoculture of *Acacias* is unlikely, however this would require ongoing monitoring and assessment. The development of weed growth is not a concern at

this stage as they do provide stability for the bank, however it is important that the weed mass does not become an inhibitor to the ultimate development of a native forest community. Weed spraying in this area should be avoided at this stage, since this would also have the effect of suppressing Eucalypt seedlings.

Although this is not represented in the statistics above, the growth of native species on the lower half of the transect is minimal. Reseeding or planting tubestock throughout this area would be beneficial to this site.

2.5.5 Site 4

Site 4, known as Bryce's gully, is a difficult area to rehabilitate. It represents a steep slope on the eastern side of the mine with poor access. Despite being one of the older rehabilitation sites at the mine, it has generally only been able to support herbaceous weeds and tussock. The site is heavily grazed by both native and introduced species because historically it has been a source of food. This in turn has made it more difficult to develop native species.

During 2020, native tree and shrub species were planted along the benches and protected in fully enclosed wire cages, each with an irrigation water supply. The cages will be removed after the plants have matured to a point where grazing pressure is no longer a concern. The irrigation system is likely to remain until root systems have developed sufficiently to ensure sustainable growth. The *Nassella trichotoma* is currently in a dormant phase, and has contributed to a high proportion of leaf litter. The site has a high LOI of 98 with minimal bare patches remaining and moderate to high soil surface indices.

The groundcover at this site is excellent, and the herbaceous weeds are gradually being outcompeted by pasture grasses. The embankments are stable due to the high vegetation cover, and therefore there is little sedimentation evident from runoff and the drainage lines are clear. The middle and upper canopy layers are currently absent, but over time the tube stock are expected to fill these areas. The habitat complexity index is still low, but is expected to improve when the upper canopy levels fill out.

This site requires active management in order to achieve the approved objective of a stable native woodland ecosystem compatible with surrounding vegetation communities. The results of this EFA study have found that the foundations of the land use goal have been established with good groundcover and SSA indices. Adequate tree and shrub development are however in the early phase and will take some time to achieve sustainability.

These foundations could be improved with brush matting and further native planting. The success rate of tubestock planted in enclosures is currently approximately 50% and some of these plants are showing signs of disease or stress. Replacement tubestock should be used to in fill where previous plats have not survived. The addition of tree pellets to provide slow release fertiliser should be used when planting. Tubestock that have survived have growth through the lids of the cages, which should now be removed.

2.5.6 Site 5

Site 5 is located on the second completed bench on the southern side of the Western Overburden Emplacement and represented an area of the most recent rehabilitation

undertaken at the Mine. This site has an LOI index of 90, with 10% bare ground visible in 2024.

Site 5 had a relatively high stability (65), level of infiltration (62) and nutrient cycling index (63) which were similar to, or higher than the reference site. Growth of native species will result in an improvement of the shrub and tree canopy layer will result in an increased habitat complexity index (currently 7) at this site. This is expected to occur over time as species observed in juvenile stages become established.

Juvenile Eucalypts were observed emerging in the understorey during January 2023. As observed at sites 2 and 3, the *acacia* is dominating the upper storeys. A number of older trees had also fallen at this site over the past 12 months, although several of these trees are still alive and growing horizontally. Improving biodiversity by infilling with *eucalypts* and removing excess *acacias* as required would reflect a better representation of the reference site.

A small patch of Pampas Grass *Cortaderia selloana* is located just below the transect line which should be treated with a non-selective herbicide.

2.5.7 Reference Site

The reference site used in this study was located within a community identified as Brittle Gum Stringybark Forest. This site is characteristic of a closed woodland, dominated by stringybark with minimal shrub cover. It has a complete layer of litter, good ground habitat with an abundance of logs and branches, and very few weeds. The soil is stable with full organic matter and humic in nature with no erosion evident whatsoever. There is positive ground biology including ants, termites, mushrooms and lichen. There is previous evidence of a cooler burning fire in the tree bark. Older large trees are present with hollows perfect for bird and arboreal mammal habitat and nesting.

This site is a successful indicator of landscape organisation and soil surface levels required by the rehabilitated sites, although the vegetation dynamics and habitat complexity showed previous disturbance. It is expected that the rehabilitated sites should exceed this reference site in terms of flora density and richness, particularly in the lower stratum levels. A habitat complexity score beyond that of the reference site is also required for a healthy, sustainable rehabilitated vegetation community.

This Ecosystem Function Analysis monitoring program has shown that Marulan South Limestone Mine has clear rehabilitation objectives and has selected indicators to measure rehabilitation success against a criterion. The monitoring of such indicators has highlighted that more rehabilitation work is required in the areas discussed above in order to reach a successful completion criterion.

3. RAPID VISUAL ASSESSMENT (RVA)

3.1 OVERVIEW

This report has been prepared in accordance with Section 7.3 of the Marulan South Limestone Mine Biodiversity Management Plan (BMP). The BMP incorporates the relevant management measures presented in the EIS, Response to Submission and Condition B54 of SSD7009. Chapter 7 of the BMP details the required ongoing rehabilitation monitoring program while Section 7.3 specifically outlines the scope of a Rapid Visual Assessment which is to provide a framework to document, respond and review new and emerging threats to remnant vegetation on an annual basis. This report provides the results of the Rapid Visual Assessment for the second annual RVA in 2024.

3.1.1 Background

Rehabilitation activities have been underway at the Marulan South Limestone Mine for several decades. The rehabilitation program will run over the 30 year approved life of mine and until such time as the final land use completion criteria have been satisfied. Rehabilitation monitoring is required to demonstrate that the completion criteria are on a trajectory to be met within the required timeframe set by the approval process.

3.1.2 Rehabilitation Monitoring Requirements

The overall Biodiversity Monitoring Program has three main elements:

assess the effectiveness of the management measures presented in the BMP;
assess progress against the performance indicators; and
identify improvements that could be implemented to improve biodiversity outcomes.

Section 7.3 of the BMP specifically deals with Rapid Visual Assessment (RVA) as a component of the overall rehabilitation monitoring program. RVAs will complement the Biodiversity Assessment Method (BAM) monitoring.

3.2 METHODOLOGY

The RVA is to be undertaken annually at the same locations and time each year. Each RVA site is traversed on foot and assessed for the following:

evidence of regeneration;
presence of mine rubbish;
evidence of grazing;
presence of exotic weeds and
presence of feral animal species
presence of domestic litter / rubbish;
fire disturbance;
,
evidence of nearby maintenance activities; and

surface stability and erosion.

All observations are recorded, and any remedial actions noted. Remedial action will be recommended, and the site will be reassessed in 12 months year to determine if the observation has been adequately addressed. Outcomes of the RVA will also be reported against performance indicators and completion criteria provided in Table 6.1 of the Biodiversity Management Plan. A total of 8 RVA sites were determined and examined in November 2024 as per Table 3.1 below.

3.2.1 Site Descriptions

These locations have been identified as RVA1 to RVA8 as described below.

Table 3.1 - RVA Site Locations

Site ID	Description	Southings	Eastings
RVA1	Near Bryces Dump	S34°46'21.48"	E150°2'7.85"
RVA2	Near Maggie Dump	S34°47'15.31"	E150°1'7.52"
RVA3	EFA Site T5	S34°46'42.41"	E150°0'36.77"
RVA4	EFA Site T2	S34°46'49.86"	E150°0'40.27"
RVA5	EFA Site T3	S34°46'53.03"	E150°0'36.50"
RVA6	EFA Reference Site	S34°46'52.97"	E150°0'36.75"
RVA7	Lime Dump Road Nth	S34°46'52.53"	E150°0'35.05"
RVA8	Lime Dump Road Sth	S34°46'30.11"	E150°1'16.38"

RVA1 – Bryces Gully Dump

RVA1 was located on a steep bank adjacent to Bryces gully on the eastern side of the extraction area of the mine. Its coordinates are S34°46'21.48" E150°2'7.85". It is classed as 'remnant vegetation' and has not been exposed to any prior disturbance. Natural regeneration of eucalypts and native shrubs is evident. A track which can be described as a 'goat track' is present. An aerial view of the RVA1 site is pictured below in Plate 1.

Plate 1- RVA1 Aerial view

RVA2 – Near Maggie Dump

RVA2 is located near the Maggie Dump area, towards the southern end of the site. This area is also classed at 'remnant vegetation'. Its coordinates are S34°47'15.31" E150°1'7.52". Unlike other areas of the mine, this site is scattered with Xanthorrhoea, a native grasstree. An aerial view of the RVA2 site is pictured below in Plate 2.

Plate 2- RVA2 Aerial view

RVA3 – EFA Site T5

RVA 3 is located on a previously rehabilitated site which is labelled as Site 5 in the Ecosystem Function Analysis monitoring program. This site is located on the first bench of the western overburden emplacement and was first rehabilitated in January 2019, at coordinates S34°46'42.41" E150°0'36.77". The site is dominated by acacias which are naturally regenerating. An aerial view of the RVA3 site is pictured below in Plate 3.

Plate 3- RVA3 Aerial View

RVA4 - EFA Site T2

RVA4 is located immediately south of the WOE, situated directly below the active rehabilitation areas. Its coordinates are S34°46'49.86" E150°0'40.27". Rehabilitation of this site was first conducted in 2005. The vegetation can now be described as a monoculture of *Acacia mearnsii* which appear to be heading toward the end of their lifespan, and some older trees had fallen over. There is a scatter of younger Eucalypts emerging. An aerial view of the RVA4 site is pictured below in Plate 4.

Plate 4- RVA4 Aerial View

RVA5 - EFA Site T3

RVA5 is positioned on a bank at the far south of the WOE, adjacent to the native woodlands. Its coordinates are S34°46'53.03" E150°0'36.50". This site is representative of the rehabilitation conducted on the western overburden emplacement in February 2017. Revegetation was done by direct seeding. Bundles of large fallen logs, bark and other organic material classed as "Salvaged Habitat" were positioned on the slope to improve habitat complexity. This area is comprised mostly of *A. decurrens* and lower half of the site is dominated by weed species which is progressively taking over the bare patches on the lower half of the site. An aerial view of the RVA5 site is pictured below in Plate 5.

Plate 5- RVA5 Aerial View

RVA6 - EFA Reference Site

RVA6 is situated to the South-West of the WOE. Its coordinates are S34°46'52.97" E150°0'36.75". It is classed as 'remnant vegetation' however the quality of this vegetation community has been compromised by an assumed history of disturbance which occurred approximately 25 years ago. This has led to a relatively sparse understory of native plants and a lack of old growth canopy trees. There is a thick layer of leaf litter on the soil surface and a moderate canopy predominantly of Eucalyptus species. An aerial view of the RVA6 site is pictured below in Plate 6.

Plate 6- RVA6 Aerial View

RVA7 Lime Dump Road North

RVA7 is an area of 'remnant vegetation' to the North of Lime Dump Road and has not been exposed to any prior disturbance. Its coordinates are S34°46'52.53" E150°0'35.05". There is evidence of natural regeneration in the area. An aerial view of the RVA7 site is pictured below in Plate 7.

Plate 7- RVA7 Aerial View

RVA8 Lime Dump Road South

RVA8 is located on the southern side of Lime Dump Road and is also an area of 'remnant vegetation'. Its coordinates are S34°46'30.11" E150°1'16.38". An aerial view of the RVA8 site is pictured below in Plate 8.

Plate 8- RVA8 Aerial View

3.3 RESULTS

The results of the second round of Rapid Visual Assessment which was conducted on the 21st and 25th November 2024 is provided in the following sections.

3.3.1 RVA1- Bryces Gully

RVA1 is classed as 'remnant vegetation' and is located on a steep bank adjacent to Bryces gully on the eastern side of the extraction area. Some mine rubbish is present, including cables and electrical wiring. Weed density has been estimated at approximately 10%, and this predominantly consists of *Nassella trichotoma*. No evidence of fire disturbance, grazing or erosion is present. There was scat present in this area, although only that of native fauna.

Photographic record- RVA 1 Photo Points

RVA 1 North 2023

2024

3.3.2 RVA2- Near Maggie Dump

An old track runs through the site and there is a large pile of rock which has been dumped. There was no presence of feral animals, mine rubbish, fire disturbance or erosion. Weed presence was approximately 25% which is mostly *Nassella trichotoma* which is considered a high threat weed.

Photographic Record- RVA2 Photo Points

2024

RVA2 North 2023

RVA 2 East 2023

RVA 2 Groundcover 2023

2024

3.3.3 RVA3- EFA Site T5

The ground is covered with dense grasses and approximately 30% weed species. Deer, wombat and kangaroo scat was present at this site. There was no mine rubbish, erosion or any other mine disturbance observed.

Photographic Record- RVA3 Photo Points

3.3.4 RVA4- EFA Site T2

Groundcover is dominated by a dense layer of broadleaf weeds and grasses. A deer antler was found at this site, as well as evidence of deer grazing on bark of trees. Deer, rabbit, kangaroo and wombat scat was visible. There was no evidence of human disturbance or mine rubbish. The weed cover percentage was estimated at 20%, and no erosion was evident.

Photographic Record- RVA4 Photo Points

RVA4 North 2023

RVA4 East 2023

2024

RVA4 Groundcover 2023

2024

3.3.5 RVA5 - EFA Site T3

This area is comprised mostly of *A. decurrens* and lower half of the site is dominated by weed species which is progressively taking over the bare patches on the lower half of the site. The weed cover was estimated at approximately 30%. A small amount of rilling is present although no sediment problems are evident. Feral and native animal scat is present. There is no mine rubbish or evidence of recent fire damage. There has been no mine disturbance at this site.

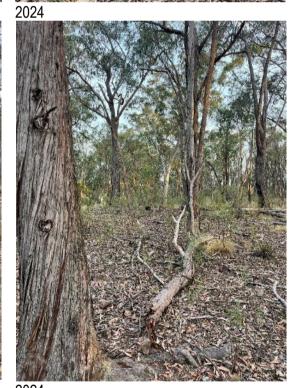
Photographic Record- RVA5 Photo Points

RVA5 Groundcover 2023

2024

3.3.6 RVA6- EFA Reference Site

There is previous evidence of a cooler burning fire on tree bark and evidence of regrowth in the shrub layer. Older large trees are present with hollows suitable for habitat of larger birds and arboreal mammals. No erosion is evident at the site. There was no evidence of native or feral animal grazing or scats. The percent of weeds was very low, at 2% cover. There is evidence of natural regeneration in the understorey. No remedial actions have been recommended for this site.


Photographic Record- RVA6 Photo Points

RVA6 North 2023

RVA6 East 2023

2024

RVA6 West 2023

2024

RVA6 Groundcover 2023

2024

3.3.7 RVA7- Lime Dump Road North

There is a high percentage of weed cover (50%), which is predominantly *Nassella trichotoma*. There were no signs of feral or native animals at this site, and no evidence of fire disturbance or erosion is present. A section of wire was visible which was classed as mine rubbish.

Photographic Record- RVA7 Photo Points

RVA7 North 2023

2024

3.3.8 RVA8- Lime Dump Road South

Similarly to RVA7, a high density of *Nassella trichotoma* was present at RVA8, at approximately 60% coverage. There is evidence of natural regeneration, and rabbit scat was present at this site. No human disturbance, mine rubbish, erosion or fire disturbance was observed.

Photographic Record- RVA8 Photo Points

RVA8 North 2023

RVA8 East 2023

RAV8 Groundcover 2023

2024

3.3.9 Summary of RVA Results

The results of the rapid visual assessment are provided in Table 3.2. This is the second round of the RVA monitoring and there were no significant changes to the monitoring sites over the past 12 months. As more data is gathered over time, trends will emerge and annual comparisons can be made.

Table 3.2 - RVA November 2024 Summary of Observations

Transect ID	Disturbance freq/intensity	Evidence natural regeneration	Presence/absence feral animals	Mine Rubbish	Grazing/Animal Pads	Weed Cover	Wind erosion	Water Erosion	Maintenance Activities	Fire freq /intensity/height	Salvaged Habitats
Units	3/3	Y/N	Y/N	Y/N	Y/N	%	3	3	Y/N	3/3/3	Y/N
RVA1	2/1 feral	yes- sprouting euc and olearia	Y- goat track	Y- cables, electrical	No grazing, yes	10	0	0	No	0/0/0	No
	animals	Uleana	9	wires	kangarroo scat						
RVA2	2/2	Y	n	No	only native	25	0	0	No	0/0/0	No
RVA3	0/0	Y - acacias	Y deer scat	No	Y deer, roo, wombat scat	30	0	0	No	0/0/0	No
RVA4	0/0	yes acacia+euc	Y deer/rabbit scat, deer antler, deer scratches	No	Y deer, rabbit, roo, wombat	15	0	0	No	0/0/0	No
5) (4.5	0/0		Y deer and rabbit		Y deer, rabbit,	0.0				0.10.10	
RVA5		No	scat	No	roo, wombat	30	0	0	No	0/0/0	yes logs
RVA6	0/0	Y	No	No	No	2	0	0	No	0/0/0	No
RVA7	0/0	Υ	No	Y- wire	No	50	0	0	No	0/0/0	No
RVA8	0/0	Υ	y rabbit scat	No	No	60	0	0	No	0/0/0	No

Key:

1= mild

2=moderate

3=extensive

3.4 RECOMMENDATIONS AND CONCLUSIONS

This section provides recommendations for remedial action at each RVA site. Recommendations will form part of the current rehabilitation management activities for the mine and timeframes will be set according to the existing strategy. Improvements made will be noted in subsequent annual RVAs.

3.4.1 Recommendations

Outcomes of the RVA are reported against performance indicators and completion criteria provided in Table 6.1 of the Biodiversity Management Plan. There was evidence of natural regeneration occurring across the sites. No evidence of sedimentation and erosion impacts on remnant vegetation was visible. Sites RVA3 and RVA4 had evidence of feral animals (particularly deer) which should be controlled. Weed cover was as high as 60% in some areas, triggering the completion criteria action of exotic plant cover <20% and high threat weeds <5% (namely *Nassella trichotoma*). There was no risk of bushfire on site during the period and no actions are required. In addition to rehabilitated areas on site, these areas of remnant vegetation would serve as optimal locations to introduce additional habitat features such as salvaged logs and hollows sourced from cleared areas on site. Recommendations specific to each RVA site are provided in Table 3.3 below.

Table 3.3 – Recommendations

Site ID	Recommendations for remedial action				
RVA1	Removal of mine rubbish				
RVA2	Treatment of Nassella trichotoma				
RVA3	Feral animal control plan including deer				
RVA4	Feral animal control plan including deer				
	Native seed sowing or planting of tubestock, in particular on the lower				
RVA5	half of this embankment.				
RVA6	No actions required				
	Treatment of Nassella trichotoma				
RVA7	Removal of mine rubbish				
RVA8	Treatment of Nassella trichotoma				

3.4.2 Conclusions

This report provides the results of the second RVA undertaken under the Marulan South Limestone Mine Biodiversity Management Plan. No significant changes were observed at the monitoring locations over the last 12 months. Some recommendations have been made which will form part of the overall management of rehabilitation work at the mine.

4. BIODIVERSITY ASSESSMENT METHOD (BAM)

4.1 OVERVIEW

The Biodiversity Assessment Method (BAM) (DPIE, 2020a) is used to monitor the condition of remnant vegetation outside of the disturbance footprint. The method calculates the vegetation integrity through composition, structure and function attributes that are entered into the BAM calculator. Scores are compared to benchmarks which are specific to each Plant Community Type (PCT). The BAM commenced at Marulan South in November 2024, as required under Section 7.2 of the MSL Biodiversity Management Plan.

4.1.1 Objectives

The purpose of the monitoring program is to monitor vegetation integrity and environmental health within the retained vegetation outside of the disturbance boundaries. This will ensure that vegetation remains undisturbed and will assist with determination of actions required to improve biodiversity across the site.

The objectives of the BAM monitoring are to:

- □ Determine the current condition of the retained vegetation on site through comparison with PCT benchmarks; and
- ☐ Identify any deterioration or improvement in habitat quality within areas of retained vegetation.

The outcomes of BAM monitoring will assist in guiding adaptive actions to achieve biodiversity objectives.

4.2 METHODOLOGY

The vegetation monitoring requirements as set out in the BMP indicate that BAM monitoring is required to be undertaken in Spring on a biennial basis following survey methods prescribed in the NSW Biodiversity Assessment Method (BAM) (DPIE 2020). The BMP identifies that BAM monitoring is to be undertaken in the following three vegetation zones:

П	ln t	he vegetation l	located to t	the north and	I south of Lime	Dump Road	l (hereafter LDR)

- ☐ In the area to the south of the Maddie Dump (hereafter MD)
- ☐ On the eastern batters to the south-west of Bryce's gully (hereafter EB)

4.2.1 BAM Monitoring Locations

The establishment of the BAM vegetation monitoring plots were conducted by walking a random distance into the vegetation zone and establishing the plot on a random bearing. Since the vegetation zone LDR is defined as a discontinuous patch with Lime Dump Road intercepting the zone, it was ensured that plots were established on both the north and south of the road. The number of plots required in each zone was determined by the size of the vegetation zones. However, EB was limited to one plot rather than the required two due to the steepness of the site and safe access. Monitoring plots are marked with a peg, while coordinates and orientation are recorded for identification of the exact site

in future. The survey plots are established as depicted in the plot diagram below.

BAM plot diagram

Table 4.1 BAM Monitoring Site

Monitoring Site	Plot reference	X coordinate	Y coordinate	Bearing	PCT
Lime Dump Road	LDR#1	-34.782 34°46′34″S	150.018 150°1'18"E	160°	PCT 3492
	LDR#2	34°46'28"S	150°1'24"E	254°	PCT 3492
	LDR#3	34°46'26"S	150°1'18"E	118°	PCT 3492
Maggie Dump	MD#1	34°47'17.48"S	150°1'8.3"E	90°	PCT 3486
,	MD#2	34°47'14.79"S	150°1'8.61"E	16°	PCT 3486
Eastern Batters	EB#1	34°47'15.34"S	150°1'7.54"E	172°	PCT 3473

4.2.2 Vegetation Integrity Survey

Composition and floristics

The vegetation composition is assessed within the 20x20m (400m² plot). Within this plot, the total count of native plant species (richness) within the six growth form groups is recorded. The growth form groups include Tree, Shrub, Grass and grass-like, Forb, Fern and Other. The three dominant species (defined by contributing most to the total cover) within each growth form group are recorded. It is to be noted whether each species is native, high threat weed (HTW) or non-HTW which is outlined in the "High Threat Weeds and Widely Cultivated Native Species lists" found on the BAM-C webpage.

Structure

The vegetation structure is an assessment of the summed species foliage cover for each growth form group within the 20x20m (400m² plot). The foliage cover is defined as the percent of the plot covered by a vertical projection of all attached living or dead plant material, including canopy overhanging the plot from an outside trunk.

Function

Function includes the measure of the number of large trees, tree stem size classes and tree regeneration for native species only within the 20x50m (1000m² plot). The tree stem size uses a measurement referred to as DBH (diameter at breast height) standardised at 1.3m above ground level. Each tree is categorised into the following classes- <5cm, 5-9cm, 10-19cm, 20-29cm, 30-49cm, 50-79cm, >80cm. Only the largest stem is counted for each tree, and dead trees and stems are omitted from this count.

The number of large trees within a vegetation zone is the sum of all trees with a DBH greater than the large tree benchmark for that PCT. This is determined by the PCT of the vegetation zone, and the benchmark for each PCT can be found in the link 'Version 1.1 Benchmarks-archived data' on the BAM-C webpage. The three PCTs identified within the BAM monitoring vegetation zones on site have a benchmark for large trees as <50cm DBH.

Tree regeneration is determined by presence or absence of trees within the <5cm tree size class category.

The total length (metres) of fallen logs is recorded within the 20x50m (1000m² plot). A fallen log must be larger than 10cm diameter and entirely or partly on the ground. Both native and exotic species are recorded for this attribute. The fallen log benchmarks for the relevant PCTs are 68m at PCT3492 and 103.5m at PCT3486 and PCT3473.

Ground cover attributes measured using the five 1m² plots include the percentage cover of litter, bare ground, cryptogram and rock. The plots are set out at 5m, 15m, 25m, 35m and 45m on alternating sides of the midline, equidistant from the midline and side boundary. An average is taken from the five plots at each site and compared to the benchmark value. The litter cover benchmarks for the relevant PCTs are 72.5% at PCT3492 and 80% at PCT3486 and PCT3473.

4.2.3 Vegetation Zone and PCT Determination

Each vegetation zone monitored under the BAM schedule is categorised into a PCT using previous vegetation mapping such as the SEED portal and the NSW BioNet Vegetation Classification database, and floristic composition data collected on site. The PCT database was filtered using the relevant IBRA Region: South Eastern Highlands and IBRA Subregion: Bungonia, which was then followed by a close examination of floristics to match the vegetation at each plot. As mentioned above, this step is required determine the relevant benchmarking scores for each attribute, which in turn allows for comparison of vegetation plot data.

Benchmarks describe the reference state to which BAM plots are compared to score biodiversity values. The three condition attributes of biodiversity are composition, structure and function and can be described by benchmarks. These three scores are then combined into a vegetation integrity score. The vegetation integrity score represents the degree to which the vegetation type at a site differs from the best-on-offer condition. A best-on-offer site can be defined by an environment within the existing environment with greater native plant species, structural complexity, and functional components in comparison to other sites in the same vegetation type and bioregion. The use of a vegetation integrity score helps to compare sites and make informed decisions related to vegetation management and improvement.

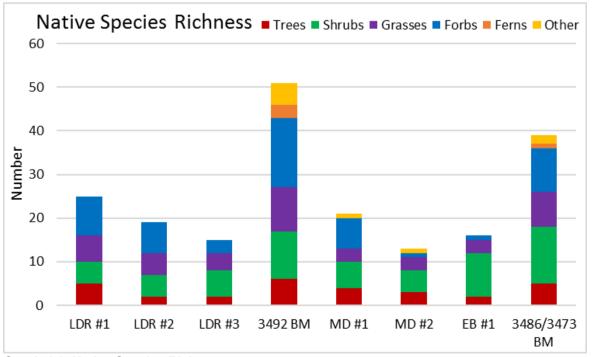
4.3 RESULTS

Photopoints from the midline at 0m of each BAM plot are presented in Plate 1 below.

#2 EB#1

The top three dominant species within each growth form group are listed below in Table 4.2.

Table 4.2 - Dominant Native Plant Species at Monitoring Plots

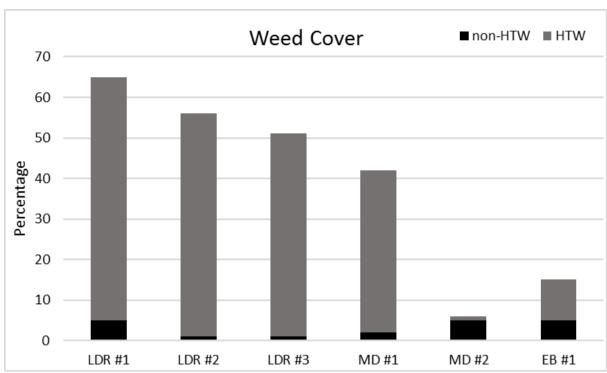

Plot	Tree	Shrub	Grass	Forb	Fern	Other/Vin e
LDR#1	E. cinerea E. bosistoana E.agglomerate	Olearia viscidula Lissanthe strigose Myoporum insulare	Dianella revoluta Lepidosperma sp. Patersonia sp.	Dichondra repens Geranium solanderi Goodenia hederacea	Cheilanthes sieberi	
LDR#2	E. cinerea E. punctata	Bursaria spinosa Lissanthe strigose Cassinia aculeata	Rytidosperma racemosum	Hydrocotyle laxiflora Opercularia diphylla		
LDR#3	E. punctata A littoralis	Olearia viscidula Bursaria spinosa Cassinia aculeata	Lepidosperma sp. Poa sieberiana	Opercularia diphylla Dichondra repens Geranium solanderi		
MD#1	E. bosistoana E.agglomerate A. littoralis	Lissanthe strigose Cassinia aculeata Senecio linearifolius	Rytidosperma fulvum Lepidosperma sp.	Opercularia diphylla Hydrocotyle laxiflora Oxalis perennans		Clematis aristata
MD#2	E. bosistoana E.agglomerate A. littoralis	Olearia viscidula Lissanthe strigose Cassinia aculeata	Rytidosperma sp. Dianella revoluta	Chrysocephalum semipapposum		Clematis aristata

EB#1	E. bosistoana E.agglomerate A. littoralis	Indigofera australis Senecio linearifolius Olearia viscidula	Dianella revoluta Lomandra filiformis Microlaena	Plantago debilis	
			stipoides		

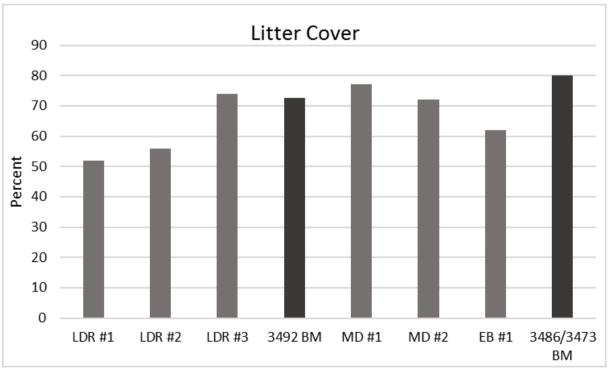
The raw data which was analysed to create Graphs 4.1 to 4.6 is included in Appendix B. Where applicable, the benchmark data has been included in the graphs below as PCT 3492 Benchmark "3492 BM" or PCT 3486 and PCT 3473 Benchmarks as "3486/3473 BM". PCT 3486 and PCT 3473 share the same vegetation class 'South East Dry Sclerophyll Forests' and therefore have the same benchmark attributes. The vegetation class for PCT 3492 is 'Central Gorge Dry Sclerophyll Forests'.

Graph 4.1 shows the native species richness of the BAM plots broken into each of the 6 growth form groups. The native species richness of all 6 BAM plots is lower than the benchmarks within all growth form groups. The tree benchmark for PCT 3492 is 6, whereas the tree species richness in LDR plots was 2 to 5 tree species per plot. The shrub benchmark for PCT 3492 was 11 species, whereas LDR plots had 5 to 6 species per plot. Similarly for the grass and forb growth form groups at LDR, the species richness was approximately half of the benchmark richness. The benchmark for ferns and other growth forms were 3 and 5 species respectively, while zero ferns or other growth forms were listed in the LDR plots. The total number of species across all growth form groups was 25, 19 and 15 in the three LDR plots, which compares to the benchmark total of 51 species at PCT 3492.

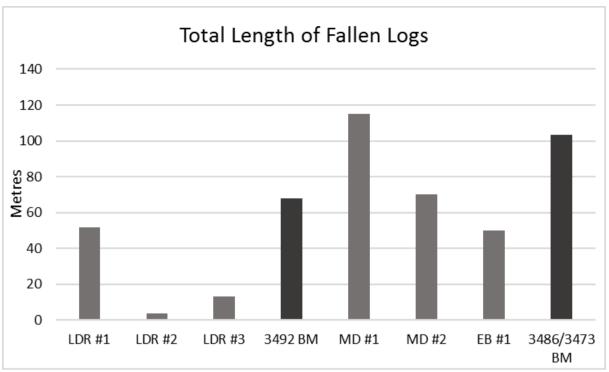
The Maggie Dump (MD) and Eastern Batters (EB) were also below the associated species richness benchmarks for PCTs 3486 and 3473 (Graph 4.1). The benchmark tree richness was 5, however 2 to 4 tree species were identified in the plots. Similarly, the shrub benchmark was 13 species, but 5 to 10 species were listed in the plots. A total of 8 grass species and 10 forb species were listed as benchmark, while 3 grasses and 1 to 7 forbs were identified in the plots. No ferns were identified in the plots, and only one 'other' species was identified at MD. The total number of species across all growth form groups ranged from 13-21, which compares to the benchmark total of 39 species.


Graph 4.1- Native Species Richness

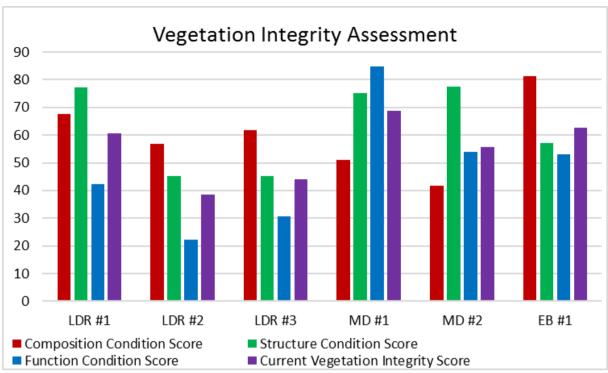
Graph 4.2 shows the native species percent cover of the BAM plots broken into each of the 6 growth form groups. The BAM plot tree species cover has not yet reached the benchmarks of 40% at PCT 3492 and 48% at PCTs 3486 and 3473. The native shrub cover benchmark is 18% across all PCTs. The LDR shrub cover was below or at benchmark with cover ranging from 5-20%, whereas MD and EB plots were all above benchmark, ranging from 20-50% cover. BAM plot native grass cover percentages range from 10-45%, with all but one (LDR#2) of the plots above the benchmark of 20%. The BAM plot native forb cover ranged from 5-15%, which was on par the benchmarks of 12% (PCT 3492) and 5% (PCTs 3486 and 3473). Fern cover was absent from all BAM 6 plots, and 1% of 'Other' was present at MD#2. Fern and 'Other' covers were 1% and 3% respectively at benchmark PCT 3492 and were both 0% at benchmark PCTs 3486 and 3473.


Graph 4.2- Native Species Cover

Exotic species covers for BAM plots are represented in Graph 4.3 below, indicating cover of high threat weed (HTW) and Non-HTW species. Non-HTW cover ranged from 1-5% across all plots. HTW cover as significantly higher, with percent cover ranging from 1-60%. The predominant HTW was *Nassella trichotoma* which dominated the ground cover of many of the plots.


Graph 4.3- Weed Cover Percent

BAM plots are assessed against benchmark values for litter cover in Graph 4.4 below. Litter cover percent ranged from 52-77%. Most plots are roughly 10-20% below the benchmarks for litter, except for LDR#3 which has a cover of 74% compared to the benchmark of 72.5% for PCT 3492.


Graph 4.4- Litter Cover Percent

The BAM plots are compared to benchmark scores for the total length of fallen logs in total metres in Graph 4.5 below. Total length of logs ranges from 4m at LDR#2 to 115m at MD#1. Plot MD#2 is the only plot above the benchmark score of 103.5m for PCTs 3486/3473.

Graph 4.5- Total Log Lengths

Graph 4.6 shows an assessment of the three condition attributes and the vegetation integrity scores for the BAM plots. These scores are calculated from the BAM-C output based on the raw data provided in Appendix B and PCT benchmarks. Composition condition (native plant species richness) scores range from 41.7 at MD#2 to 81.4 at EB#1. Structure (native plant foliage cover) was lowest at LDR#2 and LDR#3 with scores of 45.2 and 45.1 respectively, and highest at MD#2 with a score of 77.4. Function scores had the highest range, from 22.1 to 84.4 with the lowest and highest scores recorded at LDR#2 and MD#1 respectively. Overall, the vegetation integrity, which is used as a measure of vegetation condition was lowest at LDR#2 (VI=38.4) and highest at MD#1 (VI=68.7).

Graph 4.6- Vegetation Integrity Assessment

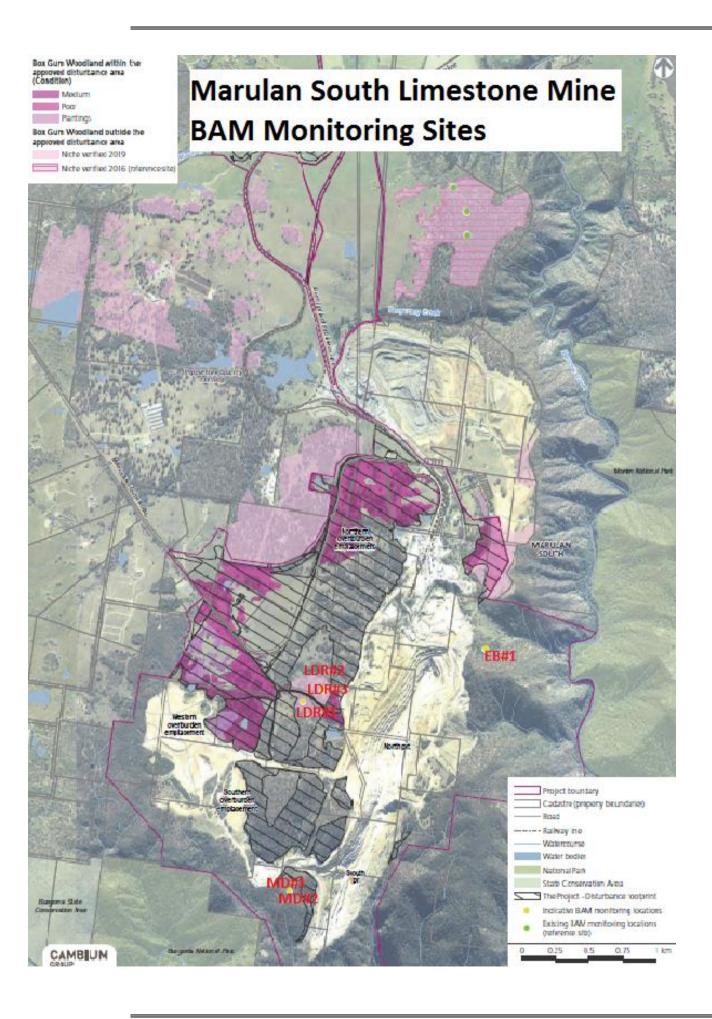
4.4 DISCUSSION AND RECOMMENDATIONS

Floristic analysis against the PCT classifications (DPE 2022) has shown that the plots correspond to:

- □ PCT 3492 Wollondilly-Shoalhaven Quarts Hills Forest at Lime Dump Road
- ☐ PCT 3486 Wollondilly-Shoalhaven Slopes Grassy Open Forest at Maggie Dump
- □ PCT 3473 Bungonia Slates Shrubby Open Forest at the Eastern Batters

The Lime Dump Road (LDR) monitoring sites have a moderate composition condition, with scores of 56.8 to 67.6. All of the growth form groups were below the benchmark, however some are approaching the benchmark native species richness numbers. The structure was quite high at LDR#1 with a score of 77.1, however LDR#2 and LDR#3 had low scores of 45. The growth form group requiring the most improvement for percentage native species cover are the tree species. Function condition is relatively low at LDR, with scores from 22.1 to 42.4. Function could be improved through management of HTW, namely *Nassella trichotoma*, improvement of fallen log length and the number of large trees (DBH>50cm). The overall health of the vegetation zone is low to moderate, based on the vegetation integrity scores ranging from 38.4 to 60.5.

Maggie Dump (MD) monitoring sites are observed to have a below benchmark native species richness, albeit a higher abundance and function. Species richness was lacking in all growth form groups, however the MD vegetation zone was the only one to host 'other' growth forms, due to the vine species present. The native species cover is at or above benchmark for shrubs, grass, forbs and other with structure condition scores of 75.1 and 77.4. Function scores are moderate to high compared to the other vegetation zones. The vegetation zone at Maggie Dump is described as moderate health, with vegetation integrity scores of 38.7 and 55.8. Improving health in this vegetation zone would focus on enhancing species richness.


The Eastern Batters (EB) has a high composition with moderate structure, function and vegetation integrity. EB has a high richness of shrubs, moderate tree and grass richness and low richness of forbs, ferns and other growth form groups with an overall composition score of 81.4. Native species cover is above the benchmark for shrubs, grasses and forbs, and has a structure condition score of 57.1. The function score is moderate (53.1) with fallen log length and litter cover below benchmark scores. Natural regeneration is occurring, cover and abundance of natives is good, overall health is moderate to good with vegetation integrity score of 62.7 and weed covers are low.

The BAM monitoring concludes that the remnant vegetation surrounding the mine is of a moderate health condition. As this was the first round of BAM monitoring at these vegetation zones, no temporal comparative data was available. Natural regeneration of native canopy and shrub species is occurring in all BAM plots, which will contribute to progress towards benchmark scores. At this stage, these areas of remnant vegetation remain undisturbed, with minor actions of weed management targeting high threat weeds including *Nassella trichotoma* to be implemented. Continuing BAM monitoring on a biennial basis will provide ongoing information regarding the health and any changes to the remnant vegetation on site.

Plan 1- EFA Monitoring Plan

APPENDIX A – EFA RAW DATA

Landscape Function Analysis Data 2024

•			Tr			Tu	oncoot 4		Tu	ancost E		Da	foronco	
Ira	ansect 2		Ira	ansect 3		Ira	ansect 4		Ira	ansect 5		Re	ference	
Distance (m)	Width (cm)	Patch Type												
0	-	-	0	-	-	0	-	-	0		-	0	-	-
5	300	W	8.0	150	W	4.5	400	W	1	100	G	1.6	1000	L
5.2	50	L	6	200	L	9	400	L	2.2	30	В	2.4	100	W
5.4	200	W	6.3	30	Ν	10	100	S	3.2	30	L	3	1000	L
5.9	50	L	7.2	80	L	20	400	W	5	50	G	3.2	200	W
7.8	1000	W	7.4	40	Ν	21	100	S	5.5	50	W	4.2	1000	L
8.1	50	L	10.2	300	L	27	400	G	6	50	L	4.4	100	W
9.2	100	W	10.4	20	W	30	100	S	7.4	30	В	6	300	L
9.5	30	L	12	200	L	39	400	L	10	200	L	6.8	500	W
10	100	W	13	100	Ν	39.5	100	S	10.5	50	В	8	50	S
11	20	L	17	200	L	41	400	L	11.5	500	L	9	500	L
16	200	W	18	200	В	42.5	100	S	11.8	50	Ν	9.7	50	W
16.2	20	L	20	200	L	47	400	W	13	20	G	10.3	100	L
16.8	50	W	21	50	В	48	100	S	14	70	W	10.6	30	S
17	20	Ν	26	300	L	50	400	L	16	50	G	12	20	W
18	50	L	26.5	20	Ν				17	30	L	15.6	1000	L
21.4	1000	W	28	1000	L				18	50	W	16	20	W
23	300	L	28.5	100	Ν				19.5	50	G	16.6	10	В
25	1000	W	30	100	L				22	200	L	19.5	80	L
25.2	20	L	30.2	20	W				23	100	W	20.8	30	В
29	300	W	31	1000	L				25	70	G	24.6	1000	L
30	100	L	31.5	30	W				26	50	L	25.2	30	В
31	100	W	32.5	100	L				27.5	30	W	37.5	1000	L
32.3	200	L	37	200	W				28	50	G	37.9	30	В
34.5	50	В	37.5	100	L				33	300	L	40.5	1000	L
36	50	L	34.9	100	W				34	100	Ν	41	100	S
37.3	200	W	40.6	100	L				34.6	50	В	43	600	L
38	20	L	43	100	W				36	100	W	43.6	200	В

Transect 2		Transect 3		Tra	Transect 4		Transect 5		Reference					
Distance (m)	Width (cm)	Patch Type												
38.6	400	W	44.2	100	В				37	200	L	47.5	1000	L
40.4	300	L	46.6	100	W				38	50	G	48	40	В
40.6	20	Ν	47.8	100	L				39	500	L	50	100	L
42	300	L	49	100	В				40	200	G			
42.2	20	W	50	100	W				41	300	L			
43	50	L							43.5	100	W			
46	300	W							43.8	20	Ν			
48	100	L							44	50	W			
49	200	W							45	100	G			
50	200	L							45.8	50	L			
									46	50	Ν			
									46.9	300	G			
									47.4	100	В			
									48	100	L			
									49	300	В			
									50	300	L			

KEY: W= Weed

N= Niche (Fallen logs, wombat hole) M= Moss B= Bare

G= Grass

S= Shrub (native shrub, tubestock) L= Litter

Table A1- Soil Surface Assessment of individual zones

Transect 2			
Zone	Stability	Infiltration	Nutrients
Weed	77.5	70.1	56.4
Litter	62.5	72.0	57.7
Native	58.3	61.6	61.5
Moss	77.5	68.9	61.5
Grass	80.0	68.9	61.5

Transect 3			
Zone	Stability	Infiltration	Nutrients
Weed	60.5	68.5	58.1
Shrub	61.8	66.5	60.3
Litter	57.5	60.4	53.8
Niche	63.2	64.6	54.7
Bare	48.1	37.0	17.1
Moss	77.5	68.9	61.5

Transect 4			
Zone	Stability	Infiltration	Nutrients
Grass	73.3	56.7	72.4
Weed	70.6	56.7	69.8
Litter	72.6	58.5	73.5
Shrub	70.8	54.8	72.2
Bare	52.6	30.2	23.3

Transect 5			
Zone	Stability	Infiltration	Nutrients
Grass	68.0	61.3	65.6
Weed	64.5	61.6	67.0
Shrub	58.3	61.6	61.5
Litter	58.3	62.2	61.5
Bare	47.2	51.1	38.5
Niche	47.2	51.1	38.5

Reference										
Zone	Stability	Infiltration	Nutrients							
Shrub	76.6	56.1	59.0							
Litter	75.2	56.1	59.0							
Niche	83.5	53.4	53.8							
Moss	73.8	35.2	39.6							
Weed	60.4	60.1	61.5							
Grass	60.4	57.9	57.7							
Bare	55.8	27.9	19.6							

Table A2- Soil Surface Assessment Individual zones contribution to the whole landscape

Transect 2				
Zone	Stability		Infiltration	Nutrients
Weed		49.0	44.3	35.7
Litter		10.0	11.5	9.2
Native		9.5	10.0	10.0
Grass		3.7	3.2	2.8
Total		72.1	69.0	57.7

Transect 3				
Zone	Stability		Infiltration	Nutrients
Weed		24.1	27.3	23.1
Shrub		17.6	18.9	17.1
Litter		2.8	2.9	2.6
Niche		0.8	0.8	0.7
Bare		11.1	8.6	4.0
Moss		2.0	1.8	1.6
Total		58.3	60.2	49.1

Transect 4			
Zone	Stability	Infiltration	Nutrients
Grass	7.2	5.6	7.1
Weed	40.3	32.3	39.8
Litter	12.3	9.9	12.5
Shrub	10.3	8.0	10.5
Bare	0.8	0.5	0.4
Total	71.0	56.3	70.3

Transect 5			
Zone	Stability	Infiltration	Nutrients
Grass	30.0	27.1	29.0
Weed	8.0	7.6	8.3
Shrub	15.5	16.4	16.4
Litter	9.0	9.6	9.5
Bare	0.7	0.7	0.5
Total	63.2	61.4	63.7

Reference										
Zone	Stability	Infiltration	Nutrients							
Shrub	20.9	15.3	16.1							
Litter	47.1	35.2	37.0							
Niche	4.7	3.0	3.1							
Moss	0.6	0.3	0.3							
Weed	0.8	0.8	0.8							
Grass	0.0	0.0	0.0							
Bare	1.3	0.7	0.5							
Total	75.4	55.2	57.6							

APPENDIX B – BAM RAW DATA

Table B1- Composition: Native plant species richness

Table B1- Composition: Native plant species holiness											
	LDR1	LDR2	LDR3	PCT 3492 Benchmark	MD1	MD2	EB1	PCT 3486 and PCT 3473 Benchmarks			
Tree	5	2	2	6	4	3	2	5			
Shrub	5	5	6	11	6	5	10	13			
Grass	6	5	4	10	3	3	3	8			
Forb	9	7	3	16	7	1	1	10			
Fern	0	0	0	3	0	0	0	1			
Other	0	0	0	5	1	1	0	2			

Table B2- Structure: Foliage cover percent

	LDR1	LDR2	LDR3	PCT 3492	MD1	MD2	EB1	PCT 3486 and PCT
				Benchmark				3473 Benchmarks
Tree	35	5	2	40	20	25	15	48
Shrub	5	15	20	18	50	20	25	18
Grass	20	10	20	23	70	20	50	20
Forb	10	70	60	12	10	5	10	5
Fern	0	0	0	1	0	0	0	0
Other	0	0	0	3	0	1	0	0

Table B3- Percent weed cover (HTW= High Treat Weed)

	LDR #1	LDR #2	LDR #3	MD #1	MD #2	EB #1
non-HTW	5	1	1	2	5	5
HTW	60	55	50	40	1	10

Table B4- Function: Tree stem diameter

DBH* (cm)	LDR #1	LDR #2	LDR #3	MD #1	MD #2	EB #1
>80	0	0	0	0	0	0
50-79	0	0	0	3	1	1
30-49	11	0	2	9	10	2
20-29	8	0	1	8	19	5
10-19	13	1	4	19	14	8
5-9	15	1	1	7	9	1
<5 (P/A)	Present	Absent	Present	Present	Present	Present
Total # Large Trees**	0	0	0	3	1	1

^{*}Diameter at breast height (1.3m)

Table B5- Litter Cover Percentage

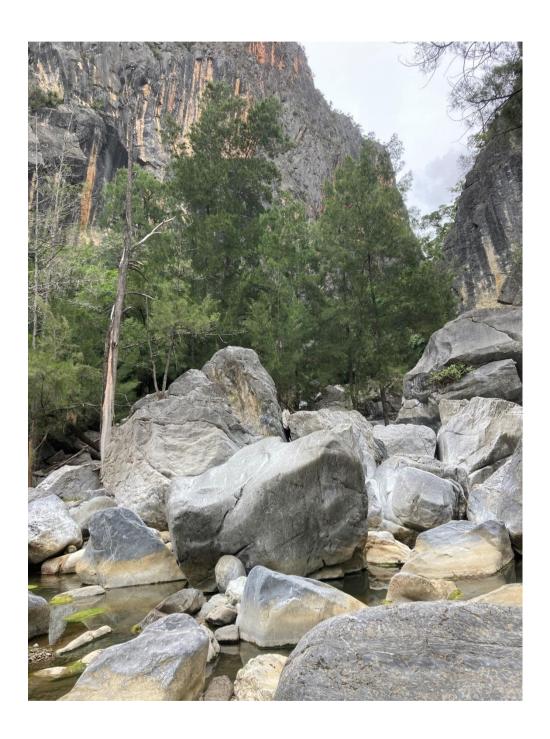
Table B3- Eitter Gover i ercentage									
Replicate	LDR #1	LDR #2	LDR #3	MD #1	MD #2	EB #1			
1	20	80	80	80	85	60			
2	50	50	60	40	70	95			
3	40	30	60	90	95	50			
4	60	60	90	80	20	50			
5	90	60	80	95	90	55			
Average	52	56	74	77	72	62			
Benchmark	72.5	72.5	72.5	80	80	80			

^{**}Benchmark of large tree for associated PCTs is >50cm DBH

Table B6- Length of logs

	LDR #1	LDR #2	LDR #3	MD #1	MD #2	EB #1
Sum (metres)	52	4	13	115	70	50
Benchmark (metres)	68	68	68	103.5	103.5	103.5

Table B7- BAM-C output scores


	PCT#	Composition Condition Score	Structure Condition Score	Function Condition Score	Current Vegetation Integrity Score
LDR1	3492	67.6	77.1	42.4	60.5
LDR2	3492	56.8	45.2	22.1	38.4
LDR3	3492	61.7	45.1	30.7	44
MD1	3486	50.9	75.1	84.8	68.7
MD2	3486	41.7	77.4	53.8	55.8
EB1	3473	81.4	57.1	53.1	62.7

APPENDIX D

Surface Water Monitoring and River Health

Marulan South Limestone Mine Surface Water Monitoring and River System Health June 2025

Prepared By: International Environmental Consultants Pty Limited "Longmead" 700 Wombeyan Caves Road High Range NSW 2575

Table of Contents

1.	Introduction				
	1.1 Ba 1.2 Stu 1.3 Ca	1 1 2			
	1.3 Ca	tchments and Receiving Environments Bungonia Creek	2		
	1.3.2		2		
2.	Surface W	4			
	2.1 Flu	4			
	2.2 Pro	5			
	2.2.1	-	6		
	2.2.2		7		
	2.3 Pro	7			
	2.3.1	Barbers Creek Water Quality Results	7		
	2.3.2		13		
	2.3.3	Blowhole Water Quality Results	18		
	2.3.4	Main Gully	23		
	2.3.5	Shoalhaven River Water Quality Results	23		
3.	Geomorph	28			
	3.1 Mc	onitoring Program	28		
		mmary of Results	28		
	3.2.1		28		
	3.2.2	Bungonia Creek	29		
	3.2.3	Shoalhaven River	30		
4.	Conclusion	31			
	4.1 Co	31			
		nclusions commendations	31		

Appendices

Appendix A - Site Photographs

1. Introduction

1.1 Background and Project Context

This report has been prepared by International Environmental Consultants Pty Limited (IEC) in response to conditions listed in Marulan South Limestone Mine State Significant Development approval SSD7009. Specific conditions include the Water Management Performance Measures listed in Table 4 Condition B43, Condition 45(e)(iii), Condition 45(e)(iv), Condition 45(e)(vi), and subsequent commitments made in the 2021 Water Management Plan.

The project involves ongoing limestone extraction within the Bungonia region of the Southern Tablelands, New South Wales. The site is located adjacent to sensitive watercourses, including Barbers Creek and Bungonia Creek, which are tributaries of the Shoalhaven River. These streams and the receiving Shoalhaven gorge are valued for their ecological function, geomorphic integrity, and recreational significance.

Under the 30 year mine plan, there would be two main sources of water release from the mine that have the potential to impact channel morphology, aquatic habitat, and stream health:

- Occasional overflow from sediment dams in the event of rainfall in excess of their design capacity.
- "Clean" runoff from rehabilitated overburden emplacement areas following completion of mining.

The standard of treatment proposed for release would provide water that is better than, or comparable to, the water quality in the receiving environment (Advisian 2018). No adverse water quality impacts are expected on Tangarang Creek, Main Gully, Bungonia Creek, Barbers Creek, and Shoalhaven River and that no impacts are anticipated on downstream users or on aquatic fauna (Advisian 2018, Niche 2018).

This report has been prepared to describe the existing hydro-geomorphic condition of the study streams, outline the monitoring framework, present an assessment of potential and observed impacts from mining operations on receiving waters and to verify the impact predictions contained in the SSD EIS and subsequent management plans.

1.2 Study Objectives and Scope

The primary objectives of this investigation are to:

- □ Document baseline fluvial, geomorphological, and surface water characteristics of Barbers Creek, Bungonia Creek, and the Shoalhaven River in the vicinity of the mine.
- ☐ Establish a monitoring framework to detect changes in water quality, geomorphic condition, and stream health attributable to mining operations.
- Analyse monitoring results to identify trends in hydrology, sedimentation, and channel morphology.

The scope of this report is limited to the catchments and receiving waters potentially affected by the mine, with a focus on tributary inputs and confluence dynamics. Broader catchment processes of the Shoalhaven River are acknowledged but not assessed in detail.

1.3 Catchments and Receiving Environments

The study area lies within the upper Shoalhaven River catchment in the Southern Tablelands of New South Wales (Figure 1). The Shoalhaven River is a major coastal river system that drains to the Tasman Sea via the Shoalhaven estuary. In the vicinity of the mine, the river flows through a deeply incised gorge system, confined by resistant sandstone and limestone bedrock. This gorge reach is characterised by alternating rapids, deep scour pools, and narrow inset benches that represent the main depositional environments.

Barbers Creek Barbers Creek is a small, steep tributary that drains directly from the limestone mining area into the Shoalhaven River. The catchment is relatively small and highly responsive to rainfall, producing rapid rises and recessions in flow. The channel alternates between bedrock-controlled sections and short alluvial pockets containing riffle—pool sequences and inset benches. Its small size and proximity to the mine make Barbers Creek particularly sensitive to changes in runoff and sediment inputs.

1.3.1 Bungonia Creek

Bungonia Creek drains a broader limestone plateau to the south and east of the mine and enters the Shoalhaven River through a narrow slot canyon within Bungonia National Park. The creek is almost entirely bedrock confined, with a series of plunge pools, cascades and short riffles. The confined nature of the valley limits natural sediment storage, meaning that additional sediment inputs are readily conveyed to the Shoalhaven River.

1.3.2 Shoalhaven River

Shoalhaven River in the study area is a bedrock-confined gorge system situated downstream of the Bungonia and Barbers Creek confluences. While the river has limited floodplain development in this section, it does contain discontinuous inset benches and bar deposits that are sensitive to increased sediment supply from tributaries. The Shoalhaven River downstream of these confluences is an ecologically significant waterway, supporting aquatic habitat diversity, riparian vegetation, and recreational values.

.

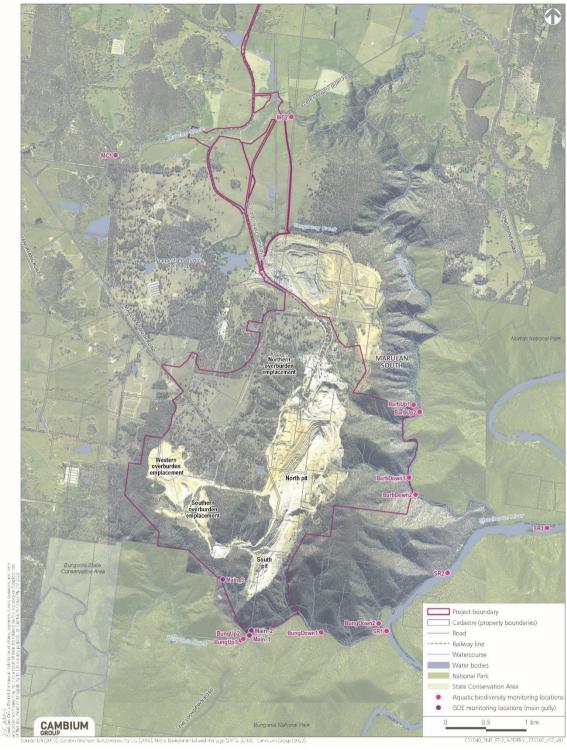


Figure 1 – Monitoring Sites

2. Surface Water Monitoring Program

This section details the surface water monitoring program which has been designed to identify any potential impacts caused by the limestone mine as well as general river system health.

2.1 Fluvial System

Barbers Creek features a steep-sided gorge extending approximately 8 km before it joins the Shoalhaven River, located east of the mine site. This stretch consists of a rocky, boulder-strewn channel with numerous rock pools and a gradient ranging from 5% to 6%. At its confluence with the Shoalhaven River, the catchment area is approximately 90 km². Vegetation along the creek's banks includes a diverse range of ferns, Casuarinas, sandpaper figs, and native grasses such as snow grass and Lomandra (see Plates 1 and 2, Appendix A). Black She-oak is also present but less common than along the Shoalhaven River.

A tributary originating from the Eastern Batters flows into Barbers Creek and is currently being monitored (see Plate 9). This site is located between the upstream and downstream monitoring points on Barbers Creek. An additional water sample is also collected directly upstream of the tributary for comparison. Since monitoring began in December 2022, there has been no observed change in Barbers Creek's water flow, quality or sediment characteristics. The tributary exhibits higher salinity and lower redox potential, while dissolved oxygen (DO) and pH levels remain similar to those of Barbers Creek (see Section 2.3.1).

Bungonia Creek is characterised by a steep-sided gorge containing a rocky, boulder-strewn channel that extends approximately 8.5 km upstream from its confluence with the Shoalhaven River. The upstream and downstream water quality monitoring sites are strategically located on either side of the Main Gully confluence. Within this section, the creek exhibits a longitudinal channel slope of approximately 4%. The contributing catchment area is approximately 275 km²—over three times the size of Barbers Creek—resulting in significantly greater hydrological capacity during high rainfall events. Under such conditions, the creek is capable of mobilising both fine and coarse sediments, as well as large boulders, indicating a highly dynamic sediment transport regime.

Riparian vegetation along Bungonia Creek is broadly similar in composition to that of Barbers Creek (refer to Plates 3 and 4, Appendix A). The banks support a dense assemblage of ferns and climbing species, as well as extensive stands of Casuarinas, native figs, and grass trees (*Xanthorrhoea* spp.). The surrounding gorge vegetation is dominated by a range of Eucalyptus species, including *Eucalyptus tereticornis*, *E. melliodora*, and *E. macrorhyncha*, which contribute to the structural and ecological complexity of the catchment.

Main Gully is a natural drainage line which, prior to mining activities, drained a catchment area of approximately 230 hectares and functioned as the primary surface water conveyance feature for the southern portion of the site. However, ongoing expansion of the mine void has significantly reduced the contributing catchment, resulting in minimal surface discharges. Presently, Main Gully functions as an ephemeral drainage feature with infrequent flow events.

The designated Main Gully monitoring location is situated on the southwestern margin of the South Pit. From this point, the drainage line continues in a northerly direction before ultimately

discharging into Bungonia Creek just downstream of the upstream Bungonia Creek monitoring site.

Located downstream of Main Gully is a notable hydrogeological feature referred to as the "Blowhole" (Plate 5, Appendix A). This feature represents a perennial groundwater seep or spring, emerging below the elevation of the South Pit and independent of surface runoff processes. The Blowhole's discharge is exclusively groundwater-derived and is therefore not considered representative of surface water quality conditions. Nonetheless, it contributes to baseflow within Bungonia Creek and can influence downstream water quality. Water quality samples are routinely collected at the lower extent of the Blowhole, immediately prior to its confluence with Bungonia Creek, to assess its influence on the receiving environment.

At the confluence with Barbers Creek, the Shoalhaven River drains a substantial catchment area of approximately 4,400 km². Between the confluences with Barbers Creek and Bungonia Creek, the river exhibits a broad, low-gradient channel flanked by sandy alluvial banks, which are sparsely vegetated with *Casuarina cunninghamiana* spp. The geomorphic characteristics of these sandy banks suggest that this section of the Shoalhaven River experiences significantly lower flow velocities relative to the steeper, higher-energy regimes of Barbers and Bungonia Creeks (refer to Plates 6–8, Appendix A).

Water quality data indicate that the Shoalhaven River contains markedly lower salinity levels than either of the two tributary creeks. Parameters such as electrical conductivity (EC), total dissolved solids (TDS), and overall salt concentrations are consistently lower, as documented in Tables 1 and 2 below.

A high-magnitude rainfall event in August 2020 had a pronounced geomorphic and ecological impact on the Shoalhaven River. Elevated flow volumes during this event extended 20–50 metres laterally across the floodplain, resulting in the uprooting of shallow-rooted *Casuarina* trees and widespread erosion of the sandy banks. Several affected zones, particularly at the upstream monitoring location 'SR1', remain unvegetated and exposed to ongoing erosion processes (see Plate 6d for visual documentation of the 2020 event impact).

There has been no change to the geomorphology of the Shoalhaven River for several years, and no evidence of any impacts from the mine.

2.2 Program Design

The monitoring program has been designed to detect changes in water quality and geomorphic condition that may result from mining operations, with reference sites upstream of the mine influence and impact sites downstream of the mine. The program has two main components, the first is the collection and testing of water quality within the receiving waters while the second is a visual inspection of the riverine vegetation health and photographic record of stream morphology.

Monitoring is structured around three interrelated components:

- □ Water Quality Monitoring targeted at detecting changes in turbidity, suspended solids, and other key water quality parameters.
- ☐ Geomorphology Monitoring focused on channel form, sediment storage, pool–riffle structure, and confluence dynamics.

☐ Stream Health Indicators – assessing broader ecological function through habitat condition, riparian stability, and physical diversity of aquatic environments.

This structure provides both quantitative metrics and qualitative assessments, allowing early detection of potential impacts and supporting adaptive management.

2.2.1 Water Quality Monitoring Program

The monitoring program has been designed to enable the assessment of impacts, both positive and negative, on the receiving waters over the long term. To achieve this, the monitoring and observation sites include both upstream and downstream of the mine in each of the creeks that the mine could potentially impact. This includes:

- □ Barbers Creek Upstream and Downstream sites, referred to as Barbers Up and Barbers Dn. This creek system is fed by a number of minor tributaries which drain the eastern side of the mine including the Bryces and Barbers Emplacements. Both these emplacements have been previously rehabilitated but due to their steep nature can erode and produce sediment which is deposited in the tributaries of Barbers Creek.
- Bungonia Creek Upstream and Downstream, referred to as Bungonia Up and Bungonia Dn. This is a significant tributary to the Shoalhaven River and flows along the southern boundary of the mine. Between the upstream and downstream sites are the Southern Western Batters area which has previously been rehabilitated but has the potential to be a source of sediment and similarly the clean water drainage discharge from the Western Overburden Emplacement area. The clean water drainage system flows down Main Gully but can also be a source of sediment during extreme rainfall events due to natural erosion of the bed and banks and potential overflows from dirty water areas. Main Gully is equipped with an automatic water sampling site.
- □ The Blowhole site is located above the confluence of Main Gully and Bungonia Creek. It is a natural spring which is sourced from the limestone deposit below the extraction area. It is a point where groundwater discharges to surface water and joins Bungonia Creek between the upstream and downstream sampling sites. Being groundwater derived, the water quality is significantly different from the surface water of Bungonia Creek and has often been observed with an orange sediment present (Plate 5 in Appendix 1).
- ☐ Upstream and downstream of the main receiving waters of the Shoalhaven River. There is also a mid point sampling site as well. These sites are referred to as SR1 (Upstream Site), SR2 (Mid Site) and SR3 (Downstream Site). The Shoalhaven River is considered the final receiving waters for the mine.

Samples are taken on a quarterly basis and tested for a range of physical and chemical parameters. These include pH, conductivity, suspended and dissolved solids, dissolved oxygen, alkalinity, hardness, cations and anions. These parameters provide an overall indication of river health and can be used to compare the results with other typical river systems. Additional tests are undertaken to determine if there are any specific stressors within the river system. This includes the metals Aluminium, Beryllium, Barium, Cobalt, Copper, Manganese, Molybdenum, Nickel, Selenium, Strontium, Vanadium, Zinc, Boron, and Iron. Heavy metals including Mercury, Lead, Chromium, Cadmium, and Arsenic are also included.

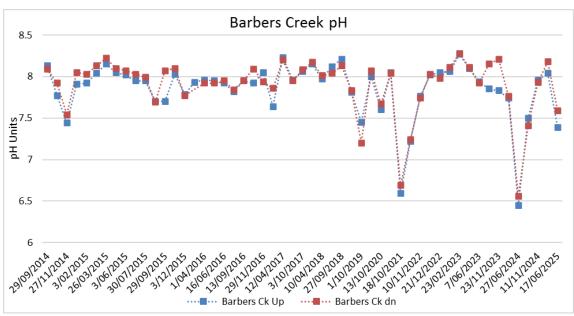
Nutrients are also included in the testing regime in order to complete the river health assessment. These include Nitrogen compounds, Phosphorus, Sulphate and Potassium. These compounds are typically associated with pollution from agriculture and manufacturing processes.

2.2.2 Stream Geomorphology

Geomorphic monitoring is designed to identify changes in channel condition and sediment dynamics attributable to quarry runoff. The program includes visual assessment of waterways at each monitoring site at the time of collection of water samples. Records of quarterly photographs at each location can then be used to determine any long term changes that may occur. The records include:

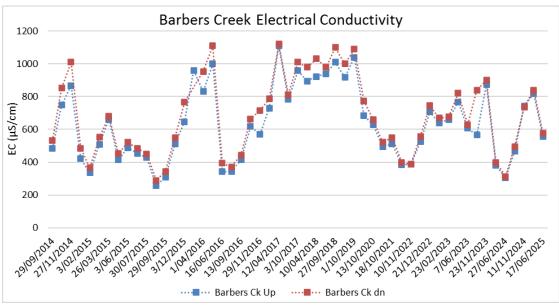
bank and bed stability;
level of sedimentation;
evidence of active erosion;
vegetation health and vigour.

The visual assessment and photographic records are compared with historic results on a quarterly basis. Additional information is recorded if considered necessary based on any sudden changes that may have occurred between quarterly inspections. This may include high rainfall events or continuation of an extended dry period.

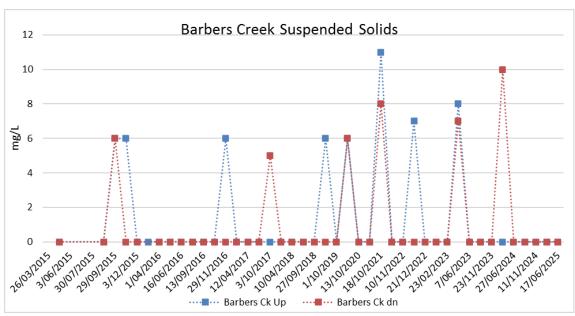

2.3 Program Results

The following section provides the results of the monitoring program up until the June 2025 reporting period.

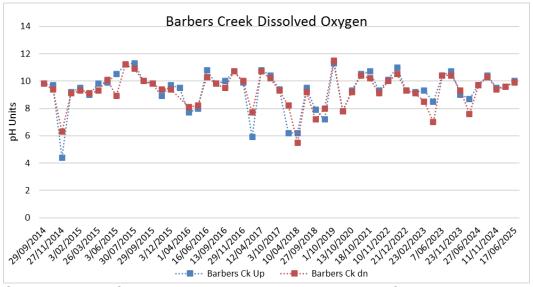
2.3.1 Barbers Creek Water Quality Results


The pH levels at Barbers Creek upstream and downstream have ranged from 6.45 pH units to 8.28 pH units since September 2014 (Graph 1). The pH has been consistent during the same sampling period at the two sites, with average pH of 7.85 and 7.89 pH units upstream and downstream respectively. Values have been more variable since heavy rainfall and high flow conditions from 2021 onwards. The lowest pH for both upstream and downstream sites was recorded in June 2024.

All of the creeks being monitored are sourced within limestone bedrock systems. Although limestone is naturally alkaline, fast flowing surface water from high rainfall events would not allow sufficient time to raise the pH in normally neutral precipitation. Flow rate and duration of contact with limestone is the main factor affecting pH.

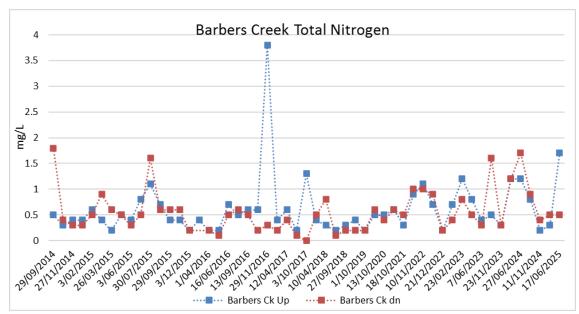

Graph 1- Barbers Creek upstream and downstream pH

The electrical conductivity levels in Barbers Creek have fluctuated from 257 μ S/cm to 1120 μ S/cm over the past 11 years as shown in Graph 2. The conductivity levels have remained similar at sites upstream and downstream during the same sampling periods. High levels of fluctuation were observed from 2014-2018 during drought conditions, which then plateaued at around 900 μ S/cm for two years until 2020. Following higher rainfall, there has been a continued drop in conductivity to levels below 400 μ S/cm which hadn't previously been recorded since late 2016.


Graph 2- Barbers Creek upstream and downstream EC

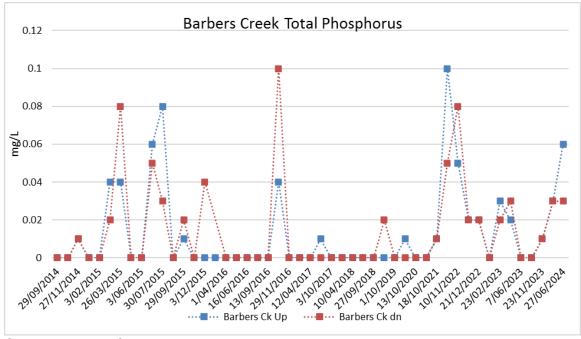
The suspended solids in Barbers Creek are often below detection limits of <5 mg/L as shown in Graph 3 below. The highest levels of suspended solids were recorded in October 2021 at levels of 11 mg/L and 8 mg/L at Barbers Creek upstream and Barbers Creek downstream respectively. Suspended solids have remained below detection limits during the last four monitoring rounds over the past 12 months.

Graph 3- Barbers Creek upstream and downstream Suspended Solids


The dissolved oxygen levels in Barbers Creek range from 4.4 mg/L to 11.5 mg/L since 2014 (Graph 4). Samples taken from upstream and downstream sites have generally followed the same trend, with the same long term average of 9.3 mg/L at both sites. This oxygen level is more than sufficient to support aquatic life and guards against potential eutrophication.

Graph 4- Barbers Creek upstream and downstream Dissolved Oxygen

The total nitrogen levels in Barbers Creek have generally remained below 2 mg/L apart from one spike of 3.8 mg/L/ at the upstream site in April 2017 (Graph 5). The average total nitrogen at Barbers Creek upstream and downstream are 0.62 mg/L and 0.57 mg/L respectively.

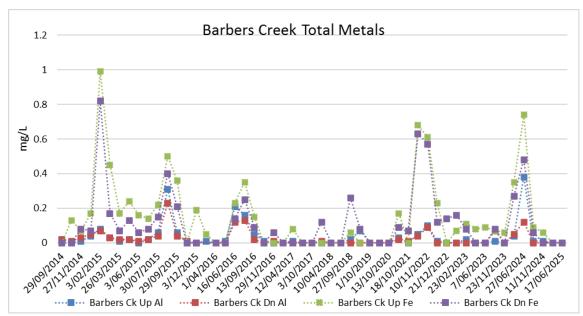

Nitrogen levels can be arbitrarily high at any point in time, particularly in small ephemeral creeks where a single dead animal can cause spikes in either Nitrogen or Phosphorus or both. If a spike appears, a comparison is made with other analytes such as dissolved oxygen to determine if there are any potential ongoing issues of concern. In this case, dissolved oxygen has remained generally between 6 and 11 mg/L which is indicative of a normal healthy river system.

Graph 5- Barbers Creek upstream and downstream Total Nitrogen

The Barbers Creek total phosphorous concentrations often remain below the detection limits of <0.01 mg/L, as shown in Graph 6 below. There have been several peaks in phosphorous over the past 11 years, with maximums recorded as 0.1mg/L at the upstream site in January 2023, and in the downstream site in December 2016.

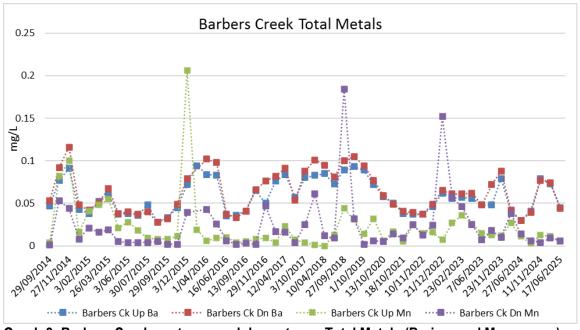
Phosphorus is as an essential nutrient for all plant and animal life, commonly as phosphate in inorganic fertiliser. Natural levels of Phosphorus have a similar range of between 0.01 to 0.08 mg/L. ANZECC/ANZG 2018 guidelines place Phosphorus levels for natural rivers and streams at less than 0.1 mg/L. The levels found in Barbers Creek are within natural levels and do not indicate that there has been any contamination with fertilisers used in the rehabilitation work on the eastern emplacement and batter areas.

Graph 6- Barbers Creek upstream and downstream Total Phosphorus


When characterising general aquatic water systems, it is important to describe metal content. Metals vary in natural systems and usually reflect the type of underlying geology through which the waterway flows. Metal concentration can also be influenced by groundwater seeps and springs which can be metal rich due to the prolonged time in contact with source rock.

The analysis of metals in the following graphs use total values not dissolved or filtrable. These values are used to give an indication of total metal load for comparative purposes and are usually higher than the dissolved levels which are referenced in guidelines such as ANZECC 2000 as updated by ANZG 2018.

Graph 7 shows Aluminium and Iron concentrations both upstream and downstream in Barbers Creek. The graph shows that although concentrations fluctuate, they fluctuate in relative unison. This is generally and indication that the concentrations are reflective of rainfall and flow volumes within the creek. There is no indication that the section of Barbers Creek as it flows past the Marulan Mine is having an influence on the concentrations of Iron and Aluminium. It is also noted that the level of Aluminium in the water is generally low being below detection limits, but on occasions has been relatively high.


An elevated reading occurred in September 2015 with 0.31 mg/L Aluminium upstream and 0.23 mg/L downstream within Barbers Creek. There was an elevated Aluminium sample in June 2024 where the upstream site reached 0.38mg/L. This level had lowered at the downstream site which was recorded at 0.12 mg/L. With the long term average concentration of Total Aluminium being less than 0.05 mg/L, the elevated reading on a particular monitoring event could have several reasons. As Aluminium is often an ingredient in fertilisers, it could be reasonably assumed that the elevated levels could have been caused by rehabilitation activities. A review of other water quality parameters during that quarter also revealed elevated total Nitrogen levels which also supports the conclusion that this sample was exposed to fertilisers.

The use of fertilisers on rehabilitation areas is normal and it is expected to be detected in downstream water quality analysis. Short term spikes are not hazardous to normal environmental or riverine processes and have no lasting or ongoing impacts. However, excessive use of fertilisers can cause nutrient related impacts within receiving waters. This situation becomes impacting if the elevated levels are sustained over longer time periods which often is the case with streams draining active agricultural areas where regular fertiliser treatments result in continual leaching of nutrients.

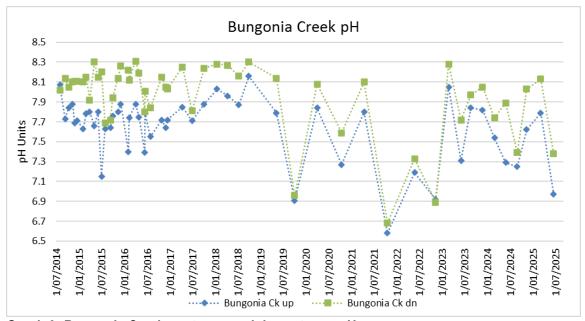
Graph 7- Barbers Creek upstream and downstream Total Metals (Aluminium and Iron)

Barium and Manganese concentrations are shown on Graph 8. Both minerals are naturally occurring although can also be generated by anthropogenic processes. Manganese is also a common fertiliser additive. There is no specified level of Barium in the ANZG 2018 guidelines however Manganese has a 95% ecosystem protection goal of 1.9 mg/L. A Manganese spike occurred in December 2015 shortly after the spike in Aluminium which also indicates that the cause could have been fertiliser addition which was making its way down stream. In May 2019 and December 2022 similar spikes in Manganese occurred in the downstream site indicating the time taken for the fertilisers to move through the sediments. This timeframe would be expected with an ephemeral creek system which does not see regular water movement but only following rainfall.

Graph 8- Barbers Creek upstream and downstream Total Metals (Barium and Manganese)

Barbers Creek is feed from a series of short ephemeral tributaries which drain the eastern slopes of the Marulan South Limestone Mine. It can therefore take several flushing events to move sediments into the main water course of Barbers Creek.

2.3.2 Bungonia Creek Water Quality Results

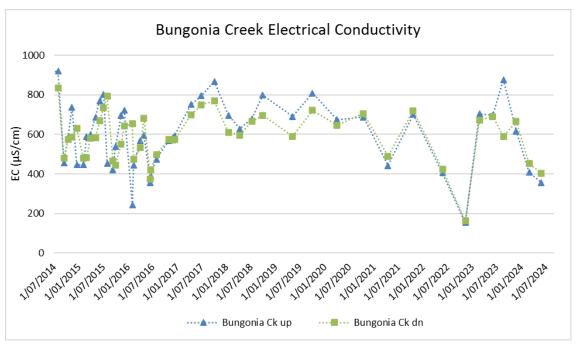

Bungonia Creek lies to the south of the Marulan South Limestone Mine. Both Barbers and Bungonia Creeks have similar geomorphology comprising bedrock, large boulders and pools with little macrophyte growth. There is a groundwater base flow component which assists in overall flow volume but can also have an effect on water quality in low flow conditions. Barbers Creek is more prone to having periods of no visible surface flow than Bungonia Creek.

Bungonia Creek receives water from Main Gully which is essentially the clean water diversion from the mine. It includes water from completed rehabilitation areas and undisturbed land however a large component of the original catchment has been cut off by the mine pit and overburden emplacements. This dirty water is directed into the South Pit.

Graphs 9 to 16 show the results of historic water quality in Bungonia Creek and centre on the upstream and downstream monitoring sites. The upstream site is well away from any potential influence of the mine while the downstream site is located just prior to the confluence with the Shoalhaven River.

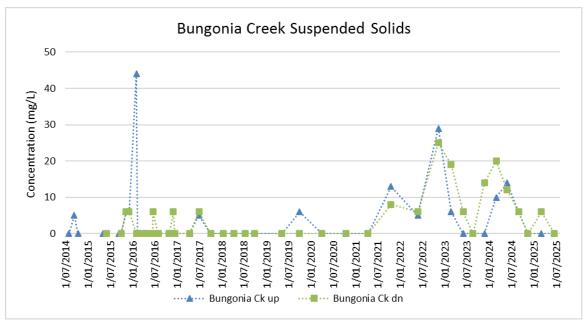
Graph 9 shows the pH results from the upstream and downstream sites of Bungonia Creek. There is excellent correlation between the two sites indicating that variations in pH are caused by natural factors which impact both the sites in a similar manner.

There is however an overall increase in alkalinity downstream of the mine with the Bungonia Down site having a long term average pH of 7.95 while the long term average for the upstream site being a pH of 7.63. Both values are reflective of the geology that the creek flows through.

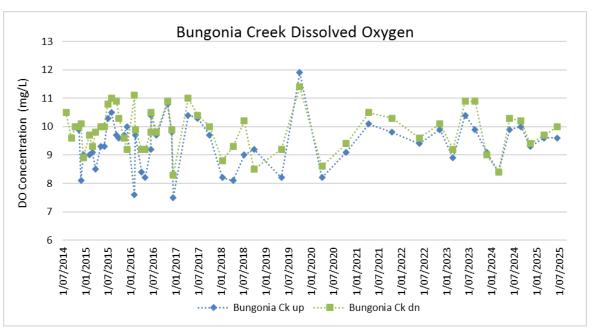


Graph 9- Bungonia Creek upstream and downstream pH

The salt content in water is measured as Electrical Conductivity. Fresh water generally has a very low conductivity of between 20 to 50 µS/cm. In natural waterways, the level of salt is a


factor of the surrounding geology that the water is passing over and the length of time that the water is in contact with that strata. Groundwater generally has higher salt levels because it has spent longer in contact with the host rock while rainwater has very low conductivity because it has yet to be influenced by the surface it flows over on the ground.

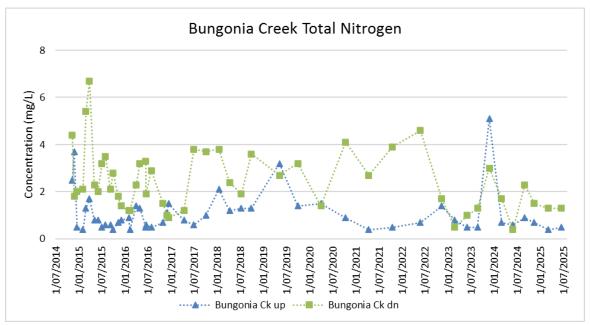
Graph 10 shows the upstream and downstream conductivity results since 2014. This graph shows that there is some fluctuation in the level of salt but a very good correlation between the upstream and downstream sample sites. The long term average conductivity for the upstream site is 611 μ S/cm, while the long term average for the downstream site is slightly lower at 594 μ S/cm.



Graph 10- Bungonia Creek upstream and downstream EC

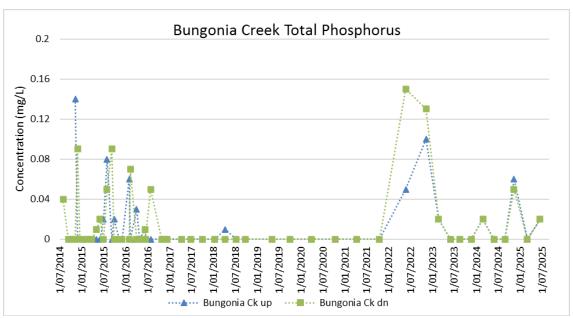
The long term average suspended solids and dissolved oxygen levels is shown in Graphs 11 and 12 respectively. The overall levels indicate that Bungonia Creek has very clear and well oxygenated water that is actively flowing. However, the data also shows that during storm events, sediment is moved downstream. These flushing events influence stream morphology over time. The Dissolved Oxygen levels are considered optimal for stream health and for the support of aquatic ecosystems.

Graph 11- Bungonia Creek upstream and downstream Suspended Solids

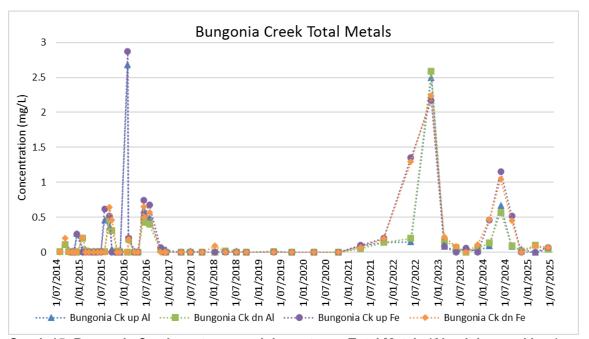

Graph 12- Bungonia Creek upstream and downstream Dissolved Oxygen

Nutrient levels are shown in Graphs 13 and 14. Nitrogen and Phosphorus are considered non-toxic environmental stressors. They are essential elements for ecosystem health but in larger quantities they can result in excessive algal growth and cyanobacterial blooms (ANZECC 2000). Total Nitrogen values in an Upland River category under ANZECC 2000/2018 guidelines is 0.25 mg/L while the long term irrigation trigger value is 5 mg/L.

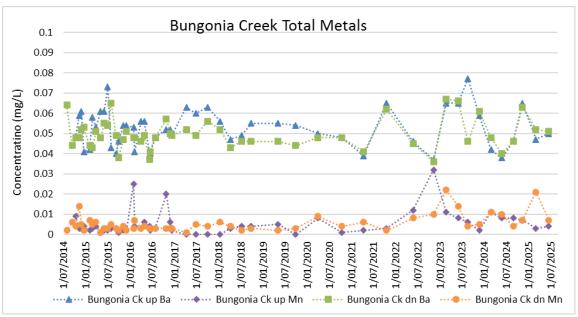
Although the overall levels are high, the upstream level is also elevated compared to the default ANZECC 2000/2018 goal. The increase downstream appears to be the result of the discharge from the Blowhole site which is located between the upstream and downstream sites. The results from the Blowhole are discussed in Section 2.3.2.


Bungonia Creek is approximately 30 km long and drains a large area of agricultural land upstream of the mine. The elevated Nitrogen could be caused by agricultural fertilisers however the increase from the upstream and downstream sites indicates that majority of the contribution is coming from the Blowhole (refer Graph 21).

As the levels are relatively consistent, it is unlikely to be caused by flow. Changes in flow appears to have an influence on some metals and suspended solids, however the concentration of Nitrogen has been relatively consistent despite changes in flow conditions between above average rainfall periods and drought. These issues are discussed in the following section.


Graph 13- Bungonia Creek upstream and downstream Total Nitrogen

Phosphorus is also an indicator of nutrient levels. ANZECC 2000/2018 guidelines have a goal for Upland Rivers of 0.02 mg/L of Total Phosphorus. There are many occasions where the level of Phosphorus is above the environmental trigger. The monitoring program commenced in a period of higher flow conditions post Millennial Drought (2001-2009). This period was followed by dry conditions in 2017 to 2019 with subsequent above average rainfall in 2021-22.

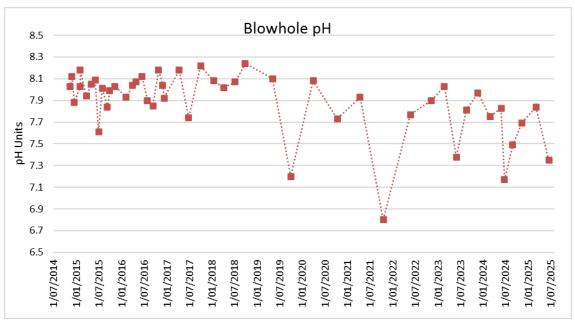

Graph 14- Bungonia Creek upstream and downstream Total Phosphorus

The pattern with Aluminium and Iron concentration is similar to that of Suspended Solids which appear to be influenced by flow conditions. Higher flow will tend to relocate minerals from higher in the catchment down towards the confluence with the Shoalhaven River. There was one elevated Iron level of 2.8 mg/L in February 2016 however there are no environmental goals specified for Iron concentration.

Graph 15- Bungonia Creek upstream and downstream Total Metals (Aluminium and Iron)

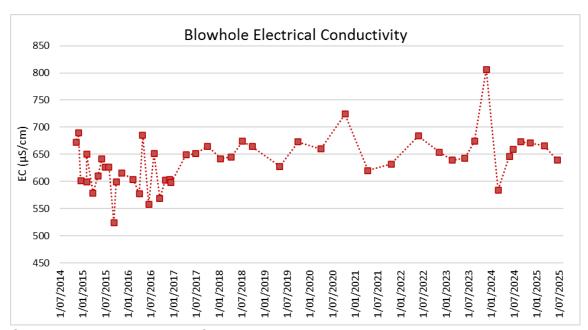
Other metals tend to follow a close correlation between the upstream and downstream sites and the overall levels are considered indicative of a healthy river system (Graph 16).

Graph 16- Bungonia Creek upstream and downstream Total Metals (Barium and Manganese)

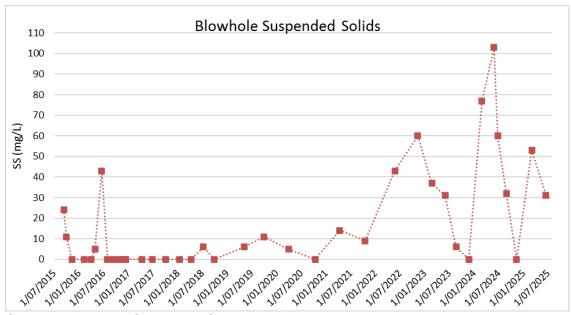

2.3.3 Blowhole Water Quality Results

The Blowhole site is located between the Bungonia Creek Upstream and Bungonia Creek Downstream sites. It is a natural spring at a lower elevation of South Pit, meaning its water is sourced from the limestone deposit below the extraction area. It is a point where groundwater discharges to surface waters and is a common feature in karst limestone environments. Being groundwater derived, the water quality is significantly different from the surface water of Bungonia Creek.

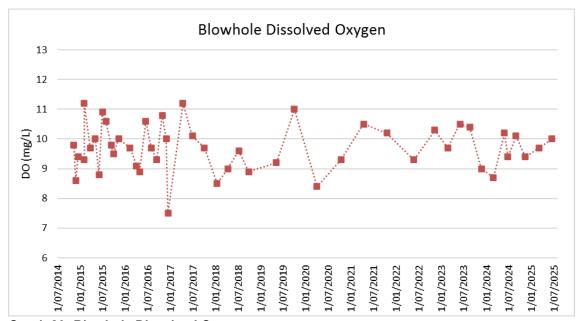
It is also possible that underground cavities exist within the limestone strata. These may contain organic compounds, stygofauna or accumulated minerals which can lead to vastly different water quality than would normally be derived from springs.


The pH levels at the Blowhole have spanned over a range of 1.4 pH units over the past 11 years, with a minimum and maximum of 6.8 pH units and 8.2 pH units respectively. The overall trend has shown a gradual decline in pH over this period of time (Graph 17). The average has been recorded as 7.9 pH units. The variability in pH indicates that there may well be other factors affecting the pH in addition to the surrounding limestone which would normally keep the pH relatively alkaline. A pH of below 7.5 on many occasions indicates that these other factors can overcome the alkalinity of the surrounding limestone.

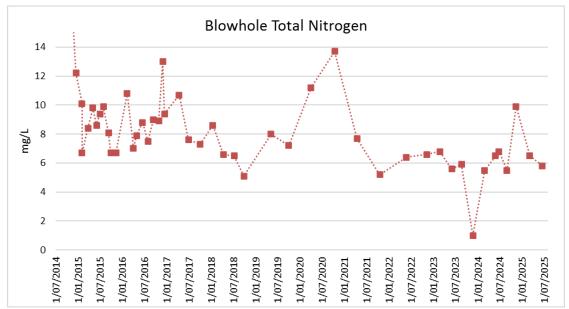
The reasons for the variability and long term trend is unknown as the actual origin and environment of the water source is also unknown. Given the geomorphological nature of the spring, its presence predates the commencement of limestone extraction. It's likely that the variability in water quality is simply a natural phenomenon.


Graph 17- Blowhole pH

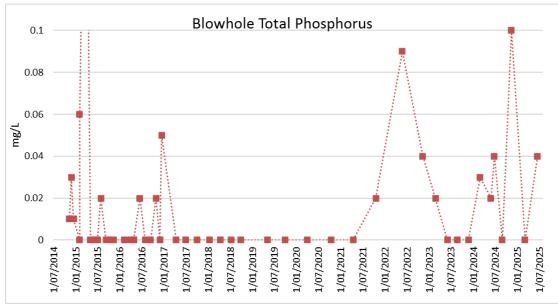
Graph 18 below shows that the electrical conductivity concentration of the Blowhole has fluctuated from 524 μ S/cm to 806 μ S/cm with an average of 638 μ S/cm since 2014. The concentration has remained relatively stable over this period of time, with no obvious trends.


Graph 18- Blowhole Electrical Conductivity

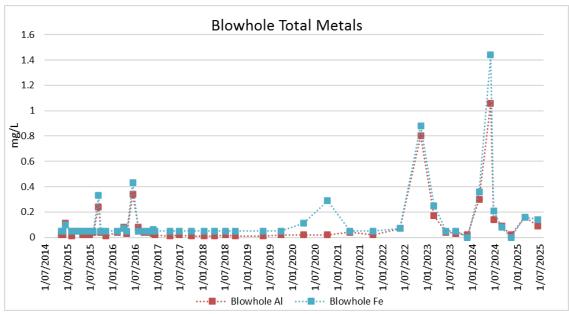
The suspended solids generally remained below the detection limits (<5mg/L), with only a few outliers up until 2019 (Graph 19). Since that time, the levels have ranged between <5 mg/L to 103 mg/L, with an increasing trend since January 2022. Suspended Solids peaked in 2024 with levels as high as 103 mg/L. During periods of high solids loading, the discharge has been noted as brown to orange in colour. This indicates the presence of elevated minerals.


Graph 19- Blowhole Suspended Solids

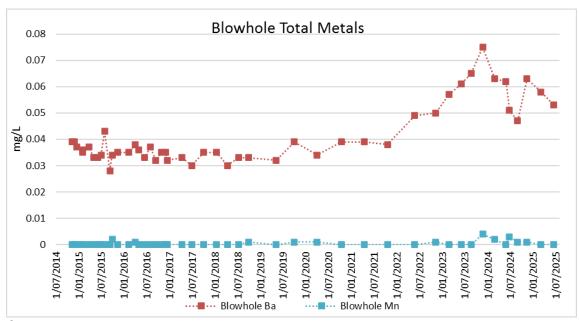
The dissolved oxygen concentrations within the Blowhole have remained relatively consistent, with an average of 9.70 mg/L and a range of 7.5 mg/L to 11.2 mg/L, as shown on Graph 20. Results show that the groundwater discharged from the Blowhole has sufficient dissolved oxygen levels to support aquatic life.


Graph 20- Blowhole Dissolved Oxygen

Nitrogen and Phosphorus occur naturally but the levels at the Blowhole are uncharacteristically high (Graph 21 and 22). For natural systems to yield Nitrogen at the measured levels would indicate the presence of high levels of organic matter. As the volume of the Blowhole discharge is relatively small, there is only a minor increase in Nitrogen levels downstream (refer Graph 13). However, the cause of the elevated Nitrogen is unknown. The long term average Total Nitrogen concentrations are 8.2 mg/L, with a range of 1.0 mg/L to 15.1 mg/L.


Graph 21- Blowhole Total Nitrogen

For a period of 4 years from 2017 to 2021, the phosphorus concentration remained below the detection limit of 0.001 mg/L. Levels of phosphorus spiked in June 2022, with a level of 0.09 mg/L during heavy rainfall and high flow events (Graph 22). The concentration of phosphorus dropped back below detection limits later in 2023. Phosphorus levels have been elevated throughout 2024 and 2025. During November 2024 the concentration increased to 0.1 mg/L.


Graph 22- Blowhole Total Phosphorus

The total Aluminium and Iron concentrations mirror the trends observed for phosphorus above. The metals in Graph 23 show lowered concentrations, often below detection limits during the drought, with elevated levels peaking in November 2022, before dropping back to lowered concentrations in 2023. The highest were recorded in 2024, with Aluminium and Iron levels of 1.06 mg/L and 1.44 mg/L, with long terms averages of 0.09 mg/L and 0.14 mg/L respectively.

Graph 23- Blowhole Total Metals (Aluminium and Iron)

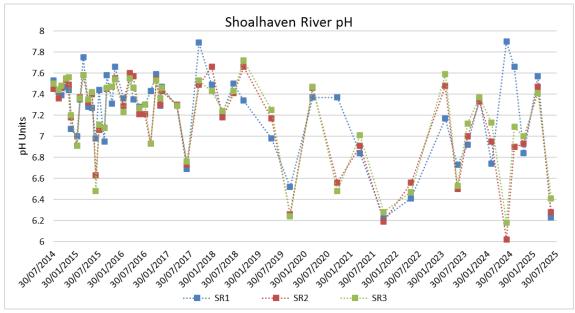
Barium has shown an increasing trend since mid-2020, with a maximum concentration of 0.075 mg/L and an average of 0.041 mg/L since 2014 (Graph 24). Manganese is also shown on Graph 24, with levels often below detection limits of 0.001 mg/L and an average of 0.005 mg/L.

Graph 24- Blowhole Total Metals (Barium and Manganese)

2.3.4 Main Gully

Main Gully Sediment Basin 2 is equipped with an automatic water sampler which is triggered automatically when the water levels rise during storm events. No overflow events occurred in the last reporting period, however heavy rainfall caused an overflow on the 2nd July 2025. Results from the discharge event are in Table 1.

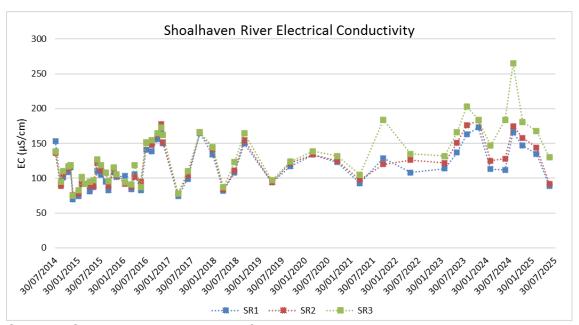
On the 2nd July 2025 a total of 91mm rainfall was recorded at the site weather station which exceeded the 95% 5 day rain event for Marulan (i.e. where rainfall exceeds 52.8 mm in a 5-day period). This resulted in a single day discharge from Main Gully, which was sampled by the autosampler.


Table 1- Main Gully Overflow Water Quality Monitoring Results

Date	pH Units	EC (µS/cm)	Suspended Solids (mg/L)	Turbidity (NTU)	Oil and Grease
2/07/2025	7.92	442	1650	3820	<5

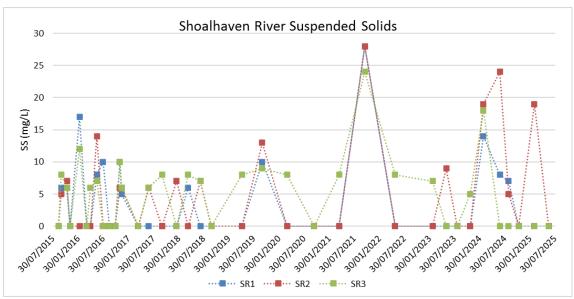
2.3.5 Shoalhaven River Water Quality Results

The pH values in the Shoalhaven River are shown in Graph 25 below. The pH has generally remained relatively consistent at all three sites within the river, with averages of 7.23 pH units at SR1, 7.16 at SR2 and 7.18 pH units at SR3. Values ranged from 6.02 to 7.90 pH units over the past 11 years. The most variability has been observed in June 2024, with the upstream site peaking at 7.9 pH units while SR2 and SR3 dropped to 6.04 and 6.18 pH units respectively. During June 2024 there was a small increase in EC and TDS at the downstream sites which can increase the acidity of the water. The pH was also a little lower in Barbers Creek than previously which has a small contribution to the receiving waters of the Shoalhaven River. Following 3 months, the high variability between the sites was no longer apparent.

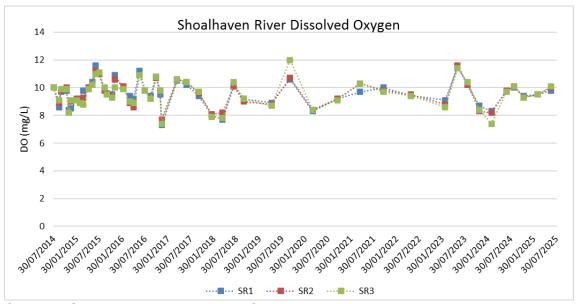

There is generally very good correlation between all three sample sites within the Shoalhaven River indicating that the Marulan Limestone Mine is not influencing natural variability.

Graph 25- Shoalhaven River pH

The electrical conductivity values are closely mirrored at upstream and downstream sites in the Shoalhaven River. From 2020 onwards, the conductivity has been slightly higher at the downstream site (SR3), as seen in Graph 26. There was a spike in conductivity at SR3 in August 2024, in which the highest value of 265 μ S/cm was recorded. The average conductivity across SR1, SR2 and SR3 are 115 μ S/cm, 120 μ S/cm and 131 μ S/cm respectively.

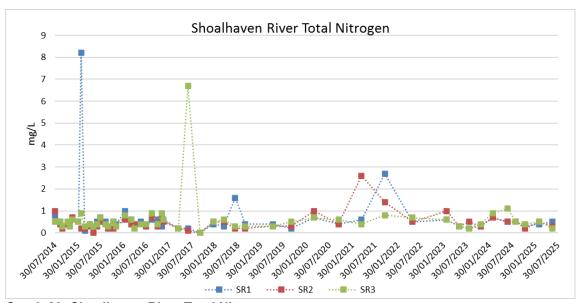

There is very good correlation between all three sample sites within the Shoalhaven River indicating that the Marulan Mine is not influencing natural variability.

Graph 26- Shoalhaven River Electrical Conductivity

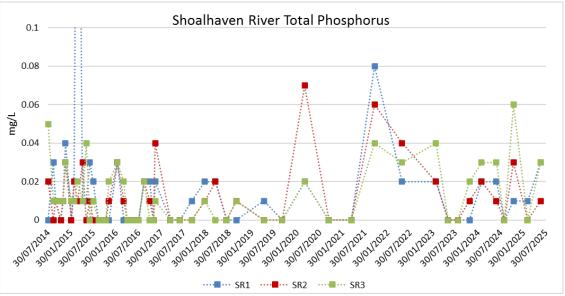

The suspended solids in the Shoalhaven River range from below detection limits (5 mg/L) to a maximum of 28 mg/L at SR2, which was experienced during the heavy rain events in 2021 (Graph 27). The levels generally fluctuate between <5 mg/L and 15 mg/L, with only a few peaks above these values over the past 11 years.

Suspended solids is a measure of fine particle movement within a waterway. It can indicate erosion caused by high rainfall events or poor quality water being discharged from a mine site. As there is very good correlation between all three sample sites within the Shoalhaven River, the Marulan Mine is not contributing to the solids loading of the Shoalhaven River.

Graph 27- Shoalhaven River Suspended Solids

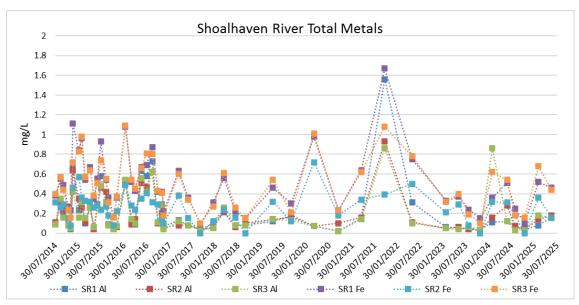

Dissolved oxygen has historically ranged from 7.3 mg/L to 12.0 mg/L over the three sites within the Shoalhaven River, which is within the range for a healthy ecosystem (Graph 28). There is also very good correlation between all three sample sites within the Shoalhaven River indicating that the Marulan Mine is not influencing natural variability.

Graph 28- Shoalhaven River Dissolved Oxygen

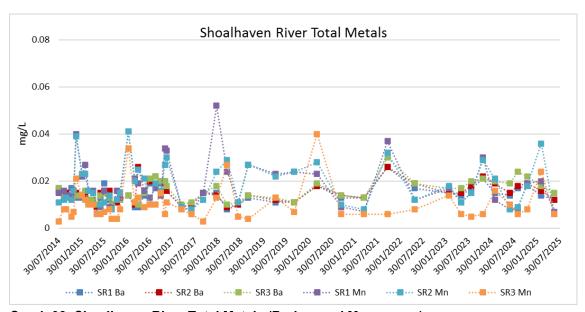

Total Nitrogen generally remained below 3 mg/L as shown in Graph 29 below. The two outlying values were 8.2 mg/L at SR1 in February 2015 and 6.7 mg/L in June 2017 at SR3. On average the Total Nitrogen concentration across all sites is 0.6 mg/L.

The two outlying results occurred in site SR1 which is an upstream site while the second occurred in the far downstream site SR3. The corresponding values for the middle site SR2 were in normal ranges. This indicates local sources of the elevated nitrogen rather than from any discharge from Bungonia or Barbers Creeks.

Graph 29- Shoalhaven River Total Nitrogen


The total Phosphorus levels range from below detection limits (0.01 mg/L) to a maximum of 0.31 mg/L at SR1 in March 2015. Generally, phosphorus levels remain below 0.04 mg/L based on results over the past 11 years (Graph 30). SR1 is the upstream site and not related to any influence from the mine.

Graph 30- Shoalhaven River Total Phosphorus


Total metals aluminium and iron are shown below on Graph 31. The combined average aluminium concentration across all sites was 0.15 mg/L, with a minimum and maximum of 0.01 mg/L and 1.56 mg/L. Aluminium concentrations were slightly lower upstream at SR1 than at the two sites further downstream (SR2 and SR3). An elevated aluminium concentration was recorded in October 2021, which follows the same trend as other total metals, suspended solids, nitrogen and phosphorus. This was during a period of high rainfall and is considered the likely source of the elevated nutrients and mineral content.

As for the iron concentrations, the average concentrations at sample sites SR1, SR2 and SR3 are 0.51 mg/L, 0.50 mg/L and 0.49 mg/L respectively (Graph 31). There is a peak in levels during October 2021, where levels recorded are as high as 1.67 mg/L.

Graph 31- Shoalhaven River Total Metals (Aluminium and Iron)

Average Barium concentrations within the Shoalhaven River are 0.015mg/L, as shown on Graph 32. Total manganese concentrations ranged from 0.003 mg/L to 0.052 mg/L with an average of 0.015 mg/L since 2014. These levels are considered low and typical of an upland river system.

Graph 32- Shoalhaven River Total Metals (Barium and Manganese)

3. Geomorphology and Riparian Health

The outcomes of the geomorphology monitoring are discussed in the following sections. These include a photographic record of the stream morphology undertaken during the quarterly surface monitoring program.

3.1 Monitoring Program

Section 6.5 of the Water Management Plan requires quarterly monitoring of Bungonia Creek, Barbers Creek and Shoalhaven River. The monitoring is to include a visual inspection to assess any potential changes in the stream or vegetation health. The selected sites are the upstream and downstream water quality monitoring locations for each waterway. The inspections involve photographing the channel and creek banks, description of the condition and note any changes observed since the last inspection.

Although required to be commenced in the first quarter of 2023, the water quality monitoring program has included a photographic record of the sample point at the time of sampling prior to 2020. Selected photographs are provided in Appendix A. These photos show each of the sample points from the beginning of the water quality program to the most recent inspection date in June 2025.

The inspections of each site now take into account details of riparian vegetation condition, channel form and condition in accordance with the River Styles framework. This includes the following attributes:

- □ Lateral stability identification of channel expansion, bank erosion migration and avulsion processes.
- □ Riparian vegetation qualitative rating of the composition (native vs exotic), continuity and vegetation assemblages in the riparian zone.
- ☐ Grain size and sorting visual estimate of the percent of the bed that comprises different grain size fractions.
- ☐ Bed stability and hydraulic diversity of sediment regime interpretation of vertical bed activity via incision, visual estimate of surface water flow, identify sediment process zones (ie source transfer, accumulation).

The results of the monitoring program to date are discussed in Section 3.2 below.

3.2 Summary of Results

3.2.1 Barbers Creek

Barbers Creek Upstream photos are provided in Plates 1 of Appendix A and Barbers Downstream photos are provided in Plate 2 of Appendix A. Barbers Creek is characterised by a rocky boulder channel with rock pools. The gradient of the channel ranges from 5% to 6%. Barbers Creek is a fifth order stream at the junction with the Shoalhaven River.

About 1.5km upstream from the confluence with Marulan Creek, Barbers Creek enters a steep sided gorge (CVS-Gorge) which extends for a distance of about 8 km down to the Shoalhaven River.

As shown on Plate 1, the upstream site has a rocky bed and banks with the banks showing signs of erosive water velocities. The bank has between 0% and 50% vegetation cover with some sections showing active erosive surfaces. This is a dynamic section of creek line where flow velocity ranges from near zero to extreme with sufficient force to relocate large boulders. There is little evidence of fine alluvial sediments in either the bed or banks.

There has been obvious change to this site between 2017 and 2025 with further instability of the banks and generally less vegetation cover. Following further heavy rainfall events at the beginning of 2024, the water level at this site is approximately 30% higher than previously recorded. The site is mainly composed of cobble sized rocks 30-50cm in diameter. The flow velocity has been very high over the last 12 months, preventing the growth of macrophytes within the creek bed. This level of change can only occur during high flow events which have not emanated from the mine. These flows are natural and a result of heavy rainfall.

Plate 2 shows the Barbers Creek Downstream site. There are less boulders in this section of creek and the bed and banks have a high concentration of finer sediment. The banks show evidence of recent erosion and colonizing species are currently returning. There are some weed grasses occurring in the finer sediments. During June 2024, there was a large amount of recently deposited sand and gravel on the banks up to 8 meters from the existing flow path. This shows that the water level rose substantially, up to an additional 1.5 meters in height during recent rainfall events.

The creek flow path divides in low flow due to the high level of bed sediments and the greater percentage of lower flow velocities. Although erosion potential is high, this stretch of the creek is generally depositional. There have been some overall changes to the creek line over the past few years but these are less dramatic than the upstream sample site. This is largely a function of greater cross sectional area available downstream which slows velocities to great a depositional environment. The inspections have not identified anything other than natural processes causing the depositional environment.

3.2.2 Bungonia Creek

As shown on Plate 3 and 4 of Appendix A, Bungonia Creek is strewn with boulders and pools. It runs through a steep sided narrow gorge for approximately 8.5 km upstream of the Shoalhaven River. The slope of the creek channel in the monitored section is approximately 4%. Bungonia Creek is also a fifth order stream at the junction of the Shoalhaven River.

The River Style of Bungonia Creek adjacent to the Project is Confined Valley Setting – Gorge (CVS-Gorge). The Bungonia Creek catchment is about three times larger than that of Barbers Creek and therefore has sufficient flow during large floods to mobilise larger boulders.

Plate 3 shows the Bungonia Creek Upstream site. This site is characteristically filled with very large boulders. Some of these boulders have fallen down the tallus slopes rather than being relocated down the river bed. The banks are coarse grained but still representative of an erosive surface. The banks show evidence of recent erosion due to extreme water velocities. The boulders provide some energy dissipation which has allowed some finer sediment to be deposited on the upstream side.

The banks are generally well vegetated with over 50% coverage and less than 10% exotic grasses. There was a healthy amount of macrophyte coverage along the edge of the creek bank during June 2025. The nature of the banks show that there is a general variation between deposition and erosive over time. These is a mixture of medium size rocks surrounded by coarse sediments showing alternating depositional and erosive episodes over time.

Plate 4 shows the Bungonia Creek Downstream site. This section of the creek is wider but still largely consisting of medium to large boulders for both the bed and banks. There are also sections which occur on bedrock. There is little evidence of deposition of finer materials. The water levels were notably high at this site and it was estimated that the current level was 40% higher than the historic level. Many larger boulders within the creek bed were completely submerged during recent monitoring.

The riparian vegetation is young but healthy, with evidence of regrowth since a prior erosional phase. There is less exotic species and up to 80% native vegetation cover. There appears to have been very little change over the past three years.

3.2.3 Shoalhaven River

The Shoalhaven River is shown on Plates 6, 7 and 8. In its reach mid-way between Bungonia Creek and Barbers Creek, it consists of a wide channel with sandy banks indicating significantly lower velocities than those experienced in Bungonia Creek and Barbers Creek.

The Shoalhaven Upstream site is shown on Plate 6. Although most of the channel is wide, the banks show typical sandy deposition on one site and bedrock controlled outer channel. On depositional banks, native vegetation is over 90% with little evidence of recent erosion. Outer banks show some evidence of past erosion but these have generally grassed over and are now stable. A large amount of blackberry is beginning to spread over the area between the SR1 site and the confluence of Bungonia Creek.

Further downstream at the SR2 site (Plate 7), the river enters a straight section where both banks have finer grained sand and silt deposits. Native vegetation cover extends over the bank to the river bed in many places and is considered stable. There has been little evidence of any change over the past three years. There is evidence that water flow has been 1.5 meters high due to large amounts of debris visible in the tree branches. There are also signs of erosion and sediment movement up to 8 meters beyond the existing bank.

Further downstream, the SR3 site occurs on a gentle bend in the river. The inside channel (western side) shows slightly more deposition than the outer eastern channel surface which is more rocky and with coarser grained sediments. This is considered a natural process. Both banks are stable with above 90% native vegetation cover and little evidence of previous erosion events during high flow. There are numerous areas of riffle flow through the channel at this location, with large rocks which were previously exposed, now submerged just below the surface of the water.

4. Conclusions and Recommendations

4.1 Conclusions

This study has presented the results of water quality and riverine health monitoring for the period ending 30 June 2025. The water quality results show that upstream and downstream water quality varies throughout the year but generally follow a correlated trend, that is, elevated elements downstream are caused by elevated levels upstream. The only variation to this occurs in Bungonia Creek where nutrients, particularly Nitrogen are higher downstream compared to the upstream site. This variation is caused by the groundwater discharge from the Blowhole site rather than the mine.

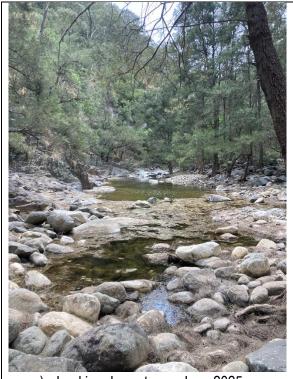
The higher nutrients from the Blowhole site are not causing a measurable change in the quality of the Shoalhaven River, however the origin of the water discharged from the Blowhole, which predates the mine, is unknown.

River health studies indicate that the receiving waters of Bungonia Creek are naturally actively eroding upstream of the mine site but become more depositional towards the confluence of the Shoalhaven River. There have been several significant changes to the bed and banks of Bungonia Creek towards the confluence with the Shoalhaven River over recent years, reflecting the impact of extreme storm events.

Barbers Creek is erosion controlled for its full length adjacent to the mine. This stretch is steep sided and prone to extreme velocities during storm events. There has been evidence of sediment movement but the health of vegetation and the overall nature of the creek line has not changed over the past three years. Although some sediment would have been derived from rehabilitated slopes, the movement of sediment downstream is a natural process which is necessary to maintain a healthy river system.

Photographic evidence of the three sites along the Shoalhaven River show little if any evidence of increased sedimentation. Riparian vegetation has remained healthy and no new bank erosion or instability has been detected.

4.2 Recommendations


This study does not recommend any changes to the current monitoring program. Over time as more data becomes available, further refinement of the monitoring program may be considered.

Appendix A - Photographic Record

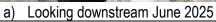

c) Looking upstream June 2025

Plate 2- Barbers Creek Downstream

b) Looking downstream October 2020

d) Looking upstream October 2020

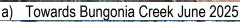
Plate 3- Bungonia Creek Upstream

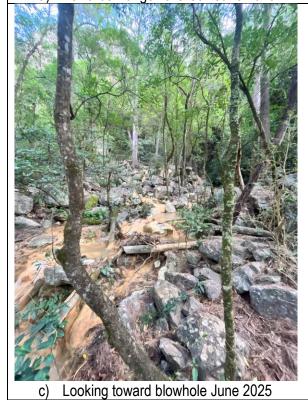
Plate 4- Bungonia Creek Downstream

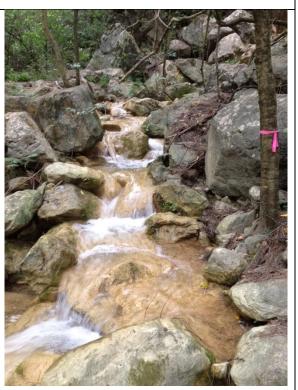
b) Looking across the sample site October 2020



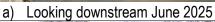
c) Looking upstream June 2025

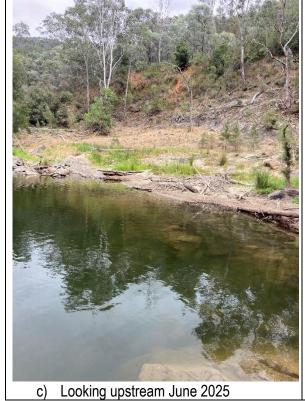

d) Looking upstream October 2020


Plate 5- Blowhole



b) Looking across flow path March 2020


d) Toward blowhole November 2017


Plate 6- Shoalhaven River Upstream (SR1)

b) Looking downstream June 2019

d) Looking upstream Oct 2020

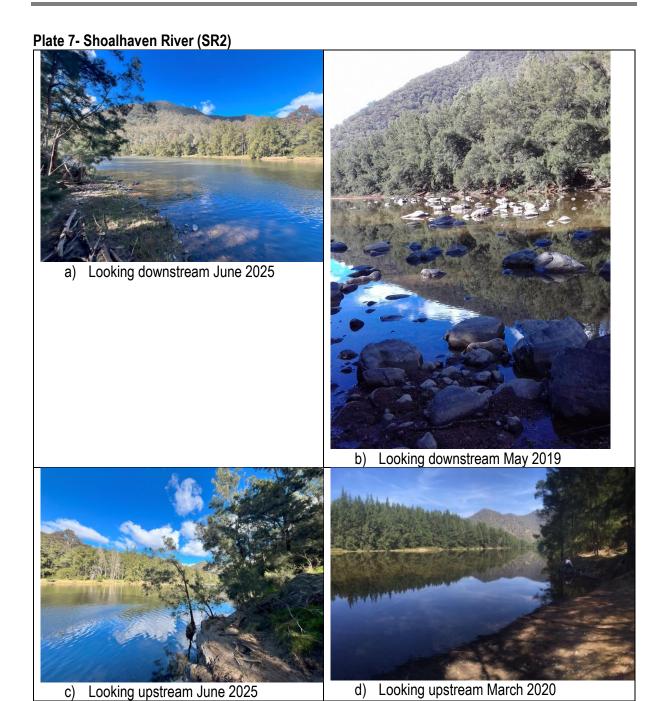


Plate 8- Shoalhaven River Downstream (SR3)

Plate 9 - Barbers Creek Tributary

APPENDIX E

Annual Groundwater Report

August 2025

Annual Groundwater Report for Marulan South Limestone Mine (2024/2025)

Report prepared for Boral Pty Ltd

Report No KD2026/04

DOCUMENT REGISTER

Revision	Status	Date	Comments/Review
A	Draft	06/08/25	AEC, CP
В	Final	25/08/2025	

TABLE OF CONTENTS

	Page
1 OBJECTIVE AND SCOPE	4
2 INTRODUCTION	4
2.1 Background	4
2.2 Environmental Values	6
2.3 Climate	9
2.4 Regional and local hydrogeology	10
2.5 Regulatory requirements and licences	
3. GROUNDWATER LEVELS	12
3.1 Groundwater monitoring network and program	12
3.2 Piezometric head measurements and trends	
3.2 Peppertree Quarry groundwater	
4. GROUNDWATER QUALITY	20
4.1 Monitoring and analysis	
4.2 Analytes monitored and trigger values	
4.3 Groundwater quality results 2024/2025	
4.3.1 Field Parameters	
4.3.2 Ionic balance results.	
4.3.3 Dissolved metal concentration	
4.3.4 Groundwater chemistry	
5 PRODUCTION BORES	
6 GROUNDWATER SEEPAGE	27
7 CONCLUSIONS AND RECOMMENDATIONS	28
8. REFERENCES	30
TABLE OF FIGURES	
Figure 1 Location map of Marulan South Limestone Mine	6
Figure 2 Potential receivers as identified in the EIS	
Figure 3 Location of regional groundwater users	
Figure 4 Aquatic GDEs within the vicinity of the Mine (GDE atlas, 2025) – approximate location of the Mine	
Figure 5 Terrestrial GDEs within the vicinity of the Mine (GDE atlas, 2025) – approximate location of the Mine	1
Figure 6 Geology map (Minview, 2025)	
Figure 7 Location of groundwater monitoring bores (2024/2025)	
Figure 8 Historical hydrographs for monitoring bores	

Figure 9 Hydrographs for monitoring bores for 2024/2025 monitoring period	16
Figure 10 Map with piezometric levels (2025), interpreted contours (blue dotted) and flow direction (blue arrows)	17
Figure 11 Hydrographs for Peppertree Quarry bores	
Figure 12 Hydrograph for PQ05 bore- continuous monitoring	
Figure 13 Piezometric levels (in yellow mAHD) and interpreted groundwater contours (dotted blue) and flow direction (blue arrows) for Peppertree monitoring bores	
Figure 14 Piper diagram showing distinct groundwater types 2024/2025	
Figure 15 Time series – Groundwater seepage and GDEs as observed in Blowhole basic water quality parameters	
Figure 16 Time series – Baseflow observed in Bungonia Creek basic water quality parameters	28
LIST OF TABLES Table 1 Average annual rainfall (source BOM station 70063)	9
Table 2 Monthly pan evaporation (mm)	
Table 3 Water access licences	
Table 4 Summary of groundwater monitoring network 2024/2025 at MSLM	14
Table 5 Piezometric heads variation over 2024/2025 monitoring period (mAHD)	15
Table 6 Summary of Peppertree Quarry monitoring bores and water levels	18
Table 7 Summary of pH and EC results for groundwater bores at MSLM	22
Table 8 Summary of ionic balance for groundwater samples collected over the 2024/2025	23
Table 9 Summary of hydrogeochemical composition of groundwaters compared to ANZG (2018) guidelines	
Table 10 Production bore summary	27

LIST OF APPENDICES

Appendix A Time series groundwater data for pH and EC Appendix B Time series groundwater data for dissolved metals

1 OBJECTIVE AND SCOPE

This annual groundwater report for 2024/2025 was prepared for Marulan South Limestone Mine (the Mine) in accordance with the Marulan South Limestone Groundwater Management Plan (GWMP) (2021) and commitment to complete annual environmental reporting of which groundwater is part of.

The report is prepared as part of the CoC D11, where "report will be submitted to DPIE reviewing the environmental performance of the development, to the satisfaction of the Planning Secretary". By the end of July each year after the commencement of development the performance measures from Table 4, Condition B43 of the development consent are applicable as part of GWMP (2021). The report needs to include a detailed assessment of monitoring results, an evaluation of any trends occurring across the Mine, any community/stakeholder complaints or non-conformances with licences/criteria and recommendations for management actions.

The following is required for annual groundwater report:

- review and analyse groundwater levels using monitoring data from the Mine's monitoring network and the Peppertree Quarry groundwater monitoring network. Prepare hydrographs, groundwater flow maps, identify trends.
- review and analyse groundwater quality data from the Mine bores and provide comparison to baseline conditions (collate data, generate time series plots, compare time series data between bores and identify trends)
- review of groundwater inflow and pumping during the year and relevant water access licences
- review of groundwater dependent ecosystems (GDE) and spring monitoring
- check for exceedances and trigger levels as part of the TARP
- Recommendation for management action (if required)

As part of this requirement a review of groundwater conditions across the Marulan South Limestone Quarry (the Mine) is undertaken, compared to historically collected information and trigger levels set in the GWMP. The report also provides recommendations for future management.

2 INTRODUCTION

2.1 Background

MSLM is located 10 km south-east of Marulan village and 35 km east of Goulburn (**Figure 1**). It is in the Goulburn Mulwaree Local Government Area (LGA). The mine is separated from the Bungonia National Park (NP) and State Conservation Area to the south by Bungonia Creek and is separated from the Shoalhaven River and Morton NP to the east by Barbers Creek.

The Mine and surrounds are characterized by rolling hills of pasture interspersed with forest to the west, contrasting with the heavily wooded, deep gorges that begin abruptly to the east of the mine, forming part of the Great Escarpment and catchment of the Shoalhaven River.

Boral Cement Limited (Boral) owns and operates the Marulan South Limestone Mine (the mine), an open cut mine. Limestone mining north of Bungonia Gorge began around 1830 with major developments emerging in the 1920s to supply limestone for cement manufacturing and steel making. The mine produces up to 3.38 million tonnes (Mt) of limestone-based products per year for the cement, steel, agricultural, construction and commercial markets. Development consent (the consent) was granted by the Department of Planning, Industry and Environment (DPIE) on 19 August 2021, to continue mining limestone at a rate of up to 4 million tonnes per annum (Mtpa) for a period of up to 30 years (the Project).

Historically limestone mining was focused on the approximately 200-400 m wide Eastern Limestone and was split between a north pit and a south pit. A limestone wall (referred to by the mine as the 'centre ridge') rising almost to the original land surface, divided the two pits. The north and south pits were joined in 2016/2017 by mining the centre ridge to form a single contiguous pit, approximately 2.5 kilometres (km) in length. However, the north pit/south pit nomenclature remains important as current mining operation locations continue to be reported with respect to one or other of the old pits. Limestone and shale are extracted using open-cut hard rock drill and blast techniques. Limestone is loaded using front end loaders and hauled either to stockpiles or the processing plant using haul trucks.

Consent was granted for a 30-year mine plan accessing approximately 120 Mt of limestone down to a depth of 335 m. The mine footprint focuses on an expansion of the pit westwards to mine the Middle Limestone and to mine deeper into the Eastern Limestone. As the Middle Limestone lies approximately 70-150 m west of the Eastern Limestone, the 30-year mine plan avoids mining where practical the interburden between these two limestone units thereby creating a smaller second, north-south oriented west pit with a ridge remaining between. The north pit will also be expanded southwards, encompassing part of the south pit, leaving the remainder of the south pit for overburden emplacement and a visual barrier.

Limestone will be extracted at up to 4 Mtpa for 30 years until 31 August 2051. Clay shale will also continue to be extracted at up to 200,000 tonnes per annum (tpa).

Figure 1 Location map of Marulan South Limestone Mine

2.2 Environmental Values

The GDE and water quality guidelines outline water quality objectives to enhance and protect environmental values and apply to groundwater and surface expression of groundwater. **Figure 2** provides the overview of all potential receivers relative to the location of the Mine. Most receivers are located over 500 m from the MSLM boundary, mainly to the west, while environmental receptors are located to the south and east (**Figures 4 and 5**). **Figure 3** shows the groundwater users within the proximity to the Mine.

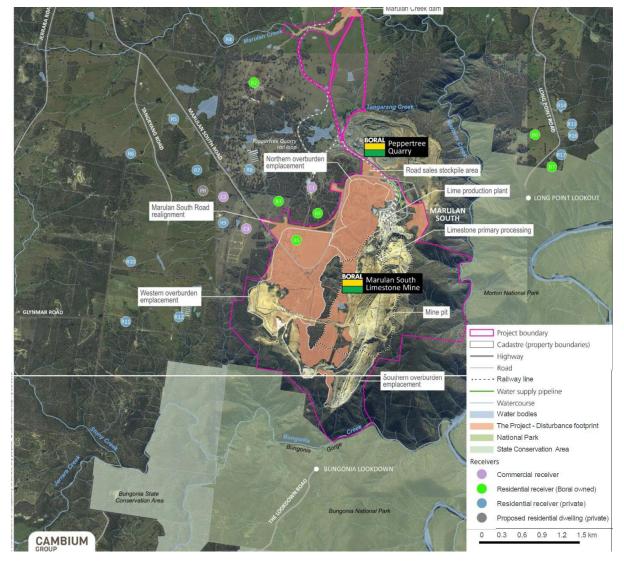


Figure 2 Potential receivers as identified in the EIS

Figures 4 and 5 show the groundwater dependent ecosystems located in the vicinity of the Mine. The area close to the Shoalhaven River is identified as low potential GDE, while low potential terrestrial GDEs are located within the southeastern part of the Mine.

Bungonia Creek located to the south and flowing to the east, is fed by springs and seepages originating from the limestone aquifer and flow in the creek is therefore indirectly connected to the limestone aquifer. An example of this process can be observed in two small caves known as Main Gully Spring (B68 - locally referred to as the 'Blowhole') and Main Gully Spring Too (B128), located within the northern escarpment of the Bungonia Gorge, south of the mine. These springs are regarded as groundwater dependent ecosystems (GDEs).

Limited alluvial sediments are associated with the Barbers (to the east and flowing north to south) and Bungonia creek lines due to their steep and rocky nature (**Figure 3**). Alluvial deposits occur closer to and along the Shoalhaven River, situated further to the east. No alluvial aquifers occur within the current and proposed mining area on the plateau.

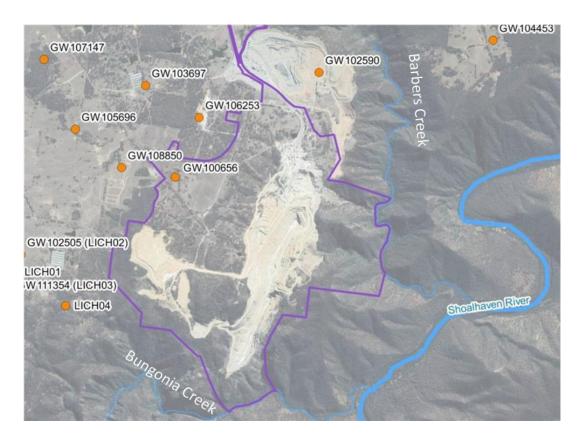


Figure 3 Location of regional groundwater users

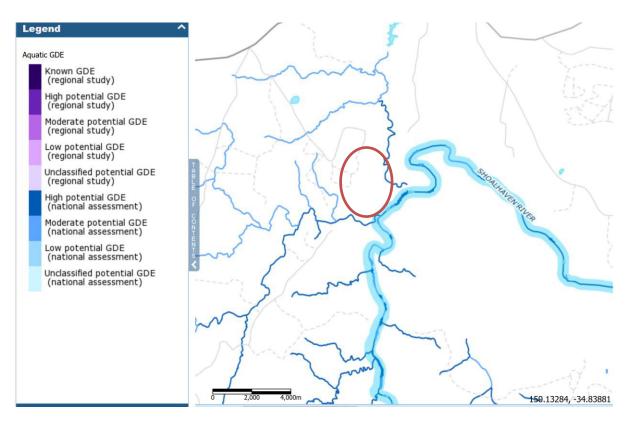


Figure 4 Aquatic GDEs within the vicinity of the Mine (GDE atlas, 2025) – approximate location of the Mine

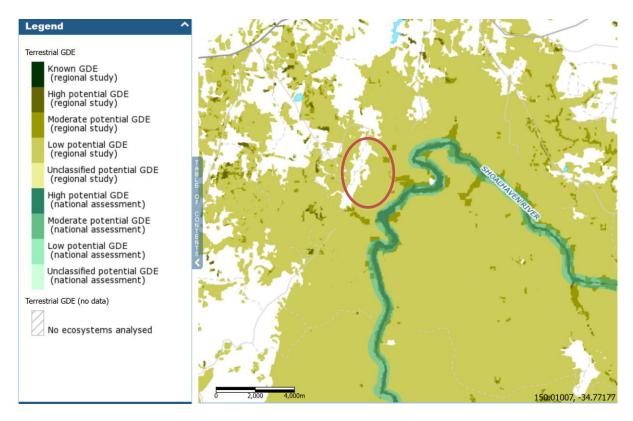


Figure 5 Terrestrial GDEs within the vicinity of the Mine (GDE atlas, 2025) – approximate location of the Mine

2.3 Climate

Average rainfall is summarized in **Table 1**. Peak rainfall occurs in the summer months, with slightly lower rainfall in winter. Rainfall is highly variable ranging from a minimum of zero in a month up to a maximum of 407 mm. In wet (90th percentile) years the annual rainfall can be up to 847 mm while in a dry (10th percentile) year it can be as low as 455 mm. During 2024/25 rainfall was below average but above median and except for June 25, most of the early 2025 it was above median and average.

Table 1 Average annual rainfall (source BOM station 70063)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average	68	73	71	52	54	64	50	47	46	61	62	63
Median	58	56	52	36	32	44	31	34	38	47	55	55
Station 700	Station 70063											
July 2024/June 2025	Jul	Aug	Sep	Òct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Rainfall monthly	44	46	23	12.5	60	57	97	85	58	66	72	12

Statistics of monthly pan evaporation for Marulan (1969 - 2021) are provided in **Table 2**. Pan Factor is applied to pan evaporation to estimate potential evaporation from water bodies, such as the mine water dams on the Mine.

Table 2 Monthly pan evaporation (mm)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Average	143	101	92	53	43	29	33	32	68	93	105	127
Median	190	145	123	83	56	40	47	70	97	128	150	179

2.4 Regional and local hydrogeology

The main groundwater system within the Marulan South Limestone Quarry is the limestone ore body targeted for mining (AGE, 2012). Fracture networks and vertical bedding convey water vertically and connect with karst seepage zones that form springs surfacing within the Bungonia Gorge (e.g. on the gorge slopes). Less permeable rock units bound the limestone and slow down lateral groundwater flow with fine-grained siltstones and sandstones present to the east towards the gorge and a sequence of volcanic units to the west.

GeoRes (2017, 2018) described the limestone currently and historically mined at Marulan South as two sub-parallel and steeply west dipping members of the Bungonia Limestone Group. These include the upper 'Mt. Frome Limestone' (formally the 'Folly Point Limestone' member) and the lower 'Eastern Limestone' (formally the 'Lookdown Limestone' member). The Mt. Frome Limestone comprises three separate limestone units: the Upper, Middle, and Lower Limestone. Each limestone unit is separated by fine-grained sediments such as mudstones, siltstones and sandstones.

To the west, the limestone is overlain by series of volcanoclastic and intrusive units composed of dacites, tuffs and volcanic breccias. All geological units dip towards the west-north-west with variable degree of steepness (GeoRes, 2018). To the south, the limestone units extend south beyond Bungonia Creek, and to the north, the Glenrock Granodiorite intrusion truncates the limestone (**Figure 6**). The granodiorite has also metamorphosed the limestone to varying degrees across the Mine.

There are two groundwater zones within and adjacent to the mine's rock units, including:

- shallow, unconsolidated zones The shallow unconsolidated aquifer is mainly within the
 weathered zone where the groundwater exists in the pore spaces within the sediment or
 regolith.
- deep, consolidated zones Groundwater within the deep, bedrock aquifer exists mainly in rock fractures caused by geologic and structural movement

The limestone is intruded with a number of dykes, both parallel and perpendicular to the strike of the limestone body. Based on Mine site observation data, the dykes oriented perpendicular to the limestone strike appear to act as hydraulic barriers, as evidenced by groundwater levels varying considerably on either side of the dykes (AGE, 2019).

Regionally, groundwater level measurements indicate flow is generally toward the east-south-east towards the deeply incised gullies of Bungonia and Barber's Creeks. The groundwater gradient across the Project area is influenced by geology changes, which often mark changes in hydraulic properties on a local and regional scale. The main groundwater recharge zones are in topographically elevated areas on the plateau and occur through diffuse rainfall recharge. Recharge on the plateau also occurs as seepage through creek and riverbeds when flowing. The mine pit also presents a groundwater recharge zone where runoff collects during rainfall events on exposed fractured limestone.

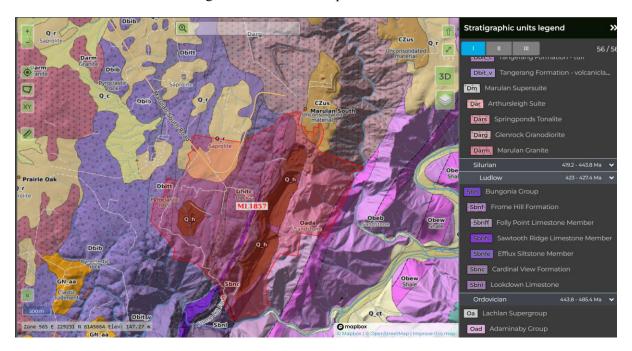


Figure 6 Geology map (Minview, 2025)

2.5 Regulatory requirements and licences

Groundwater sources in the Project area are managed under the 2023 Greater Metropolitan Region Groundwater Sources Water Sharing Plan (WSP). Under this particular WSP, the Project area falls entirely within Lachlan Fold Belt Greater Metropolitan Groundwater Source. Based on the AIP, the aquifer is classified as a 'less-productive" groundwater source.

Development consent requirements require the performance and management measures to be addressed and monitored as per GWMP in regard to the:

- Barbers Creek, Bungonia Creek, Shoalhaven River alluvial aquifers; and
- Groundwater springs.

The mine has Water Access Licences (WALs) issued under the Water Management Act (2000). **Table 3** summarises the licenses held by Boral. Boral is in the process of linking all works approval to WAL41976.

Table 3 Water access licences

WAL number	Works approval	Water sharing plan/source	Entitlement (ML)
WAL2697*	10WA116141 and 10WA116142	Goulburn Fractured Rock Groundwater Source	12
WAL41976	10WA124508 Bore GW117345	Greater metropolitan region groundwater sources 2023/ Lachlan Fold Belt Greater Metropolitan groundwater source	838
Total			850

^{*} issued but no longer active, all work supply linked to WAL41976

3. GROUNDWATER LEVELS

3.1 Groundwater monitoring network and program

The groundwater monitoring program at the MSLM was established in 2016 and includes collection of groundwater level and quality data. The monitoring network is as follows:

- Quarterly manual and continuous datalogger monitoring of nine standpipe monitoring bores –
 including 2 new bores installed in 2025. Two standpipe locations include a shallow and deep
 installation each.
- Water quality sampling of all Mine site bores on a six monthly basis with exception of MW05 which is monitored quarterly.

A water level dataset with just over eight years of monitoring now exists and provides a comprehensive understanding of the water level fluctuation over time and in response to recharge and discharge. There is limited data available for limestone aquifer due to one bore currently installed in this unit and characteristics of the limestone aquifer which includes voids.

Manual standing water levels and electronic pressure logger data are converted to a reduced water level with respect to Australian heigh datum (m AHD) and hydrographs presented in figures below.

Figure 7 shows all currently active MSLM monitoring, production bores and surface water locations.

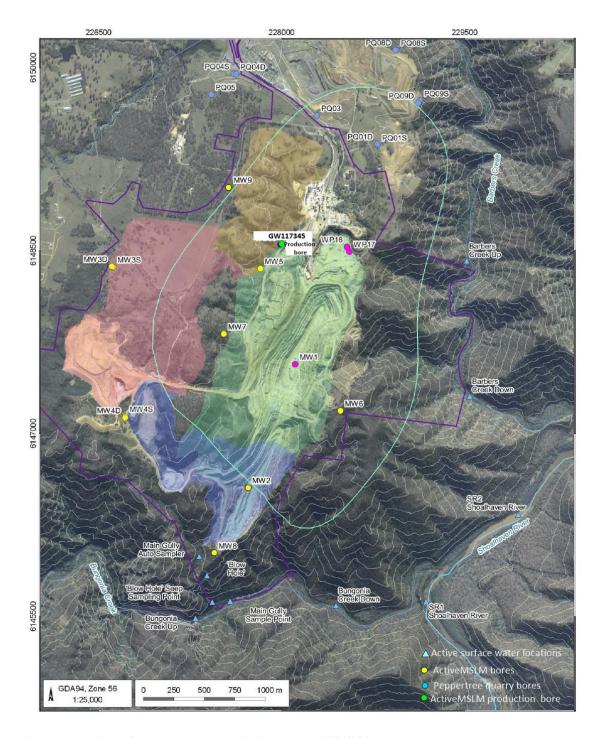


Figure 7 Location of groundwater monitoring bores (2024/2025)

The aim of the groundwater monitoring program is to provide an understanding of the behaviour of the groundwater system to provide early warning signs of any potential impact the development may have on the environment. **Table 4** provides a summary of monitoring bores and monitoring schedule.

Table 4 Summary of groundwater monitoring network 2024/2025 at MSLM

Monitoring bore	Total monitoring bore depth (mbgl)	Screened Hydrostratigraphic unit	Screened formation (mbgl)	Continuous Datalogger Monitoring Yes (6 hourly readings)	
MW03s	49	Weathered granite	39-48		
MW03d	103	Fractured granite	72-102	Yes (6 hourly readings)	
1W04s 40		Weathered granite	26-38	Yes (6 hourly readings)	
MW4d	124	Fractured granite	83-123	Yes (6 hourly readings)	
MW05	98	Weathered granite	73-97	Yes (6 hourly readings)	
MW06	128	Fractured granite	109.5-127.5	Yes (6 hourly readings)	
MW08	94	Limestone	76-91	No	
MW09	101	Weathered to fresh granodiorite	86-101	Yes (6 hourly readings)	

^{*} To be confirmed, may not be accurate

3.2 Piezometric head measurements and trends

Manual water level measurement in all bores were undertaken by IEC during the year on a six-monthly basis along with data download. Monitoring in MW03S and MW03D bores has been discontinued as of March 2025. The logger in MW03s was not reinstalled as the bore was decommissioned.

Continuous datalogging in all bores (except MW08 which is dry) was undertaken during the period from June 2024 to June 2025. A barometric datalogger is installed in one of the bores on the Mine to measure the accurate atmospheric pressure. Sampling and testing of all bores was undertaken in June 2025 as part of the preparation of this annual report.

The dataloggers installed across the Mine measure the absolute pressure including the atmospheric pressure that acts on the water column in the bore. The atmospheric pressure fluctuations (20 to 30 mbar) can result in significant piezometric head fluctuations in monitoring bores depending on the barometric efficiency of the bore (up to 20 cm change in piezometric head). Piezometric head data presented in this report have therefore been corrected and barometric pressure removed. This was undertaken such that any influence on groundwater, for example, the impact from quarry development can be identified.

Groundwater monitoring data for this monitoring period were compared with historical data (**Figure 8**). **Table 5** lists maximum, minimum and average piezometric heads over this current monitoring period. Grey highlighted are exceedance above or below trigger.

Table 5 Piezometric heads variation over 2024/2025 monitoring period (mAHD)

Monitoring bore	Trigger level 5 th %	Minimum level	Maximum level	Average	Comment
MW03s	599.9	NA	NA	NA	Insufficient data for statistical analysis
MW03d	600	607.5	607.9	607.8	Analysis does not cover whole annual period
MW04s	564.25	567.9	568.9	568.4	
MW4d	547.02	550.5	551.1	550.8	
MW05		506.5	515.7	509.8	
MW06	468	467.5	468.8	468.4	
MW08	TBC				Dry
MW09	TBC	598.2	598.5	598.3	Covers period March-June25

Historically groundwater levels fluctuated within a range of several meters for all bores, with the exception of MW05 where the level has decreased by 40 m over the past 12 years (**Figure 8**). Over the past year (covered by this report) groundwater levels fluctuation was mainly in the range from 0.3 to 1 m with the exception of MW05 where 9 m fluctuation was recorded (**Table 5**, **Figure 9**). Paired bores MW03 shallow and deep track close together and indicate hydraulic connection between deep and shallow zone. Paired bores MW04 indicate vertical hydraulic gradient of 20 m between shallow and deep bore and a downward gradient. There has been no change in the hydraulic gradient between shallow and deep zone over the monitoring period.

Groundwater level in MW05 continues a decline as observed since 2018. The decline is likely due to pumping in GW117345 which is located in the proximity of the monitoring bore. MW08 installed in limestone aquifer in March 2025 remains dry since installation. Compared to historical data, groundwater level fluctuated in monitoring bores within the same range over this reporting period.

The latest data for MW3S and MW3D is available to March 2025, as the bores have been decommissioned since 5th June 2025.

Based on the groundwater levels within the weathered and fractured granite/granodiorite and interpreted groundwater contours, it appears that groundwater flow direction is to the east and south-east (**Figure 10**). This is consistent with the baseline readings as reported in GWMP (AGE, 2021).

Groundwater level data for 2024/2025 has been compared to trigger levels (**Table 5**). MW06 was the only bore which recorded levels below 5th % trigger level. However, this occurred in April 2025 only, therefore, trigger level event did not occur. Groundwater levels have recovered in MW06 after April 2025.

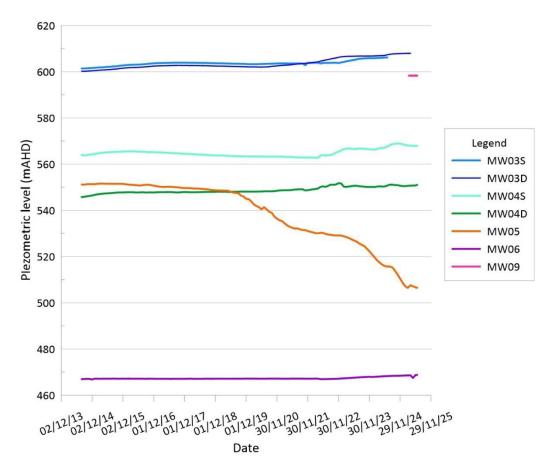


Figure 8 Historical hydrographs for monitoring bores

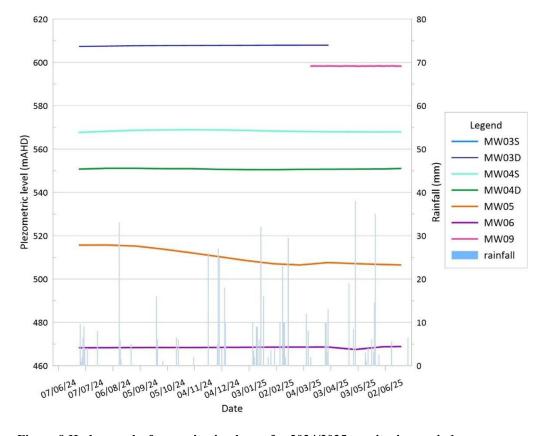


Figure 9 Hydrographs for monitoring bores for 2024/2025 monitoring period

Figure 10 Map with piezometric levels (2025), interpreted contours (blue dotted) and flow direction (blue arrows)

3.2 Peppertree Quarry groundwater

Peppertree Quarry operated by Boral is located just north of the MSLM and there is a monitoring network of bores that monitor groundwater for the operation.

WMP requires that Peppertree Quarry bores are reviewed along with the MSLM bores to understand any changes and impacts from the operation. The assessment does not include comparison to trigger levels for this operation.

A network originally included 14 monitoring points out of which 12 are groundwater bores and two are pits which collect water. During 2024/2025 there were 6 bores which were monitored as the others were destroyed and damaged during historical operation.

Table 6 provides the summary of currently monitored bores at Peppertree Quarry and **Figure 7** shows the locations. IEC samples water quality quarterly in all monitoring bores along with the manual water level reading. Bore PSQ5D has data logger installed to provide continuous monitoring of levels.

Table 6 Summary of Peppertree Quarry monitoring bores and water levels

Monitoring bore	Total monitoring bore depth (mbgl)	Minimum*	Maximum*	Average	Continuous Datalogger Monitoring
PQ01D	39.3	581.5	581.8	581.55	No
PQ04S	64.1	590.4	590.9	590.6	No
PQ05D	76.6	594.1	595.1	594.6	Yes
PQ07D	38.4	569.2	569.5	569.3	No
PQ08D	87.4	569.6	574.01	574.3	No
PQ09D	75.2	578.1	580.2	578.9	No

^{*}manual reading

Figure 11 hydrographs show that all bores respond to long term weather events, with decrease in piezometric level until 2020, which marked the longer dry period. After 2020 an overall wetter weather period resulted in a piezometric level rise in all bores. The absence of strong peaks indicates that the aquifer is not directly recharged, and recharge likely occurs at some distance and via fracture network resulting in slow movement. Stronger response to recharge is observed in PQ01D and PQ09D. All bores show a decline in levels since June 2024, however PQ08D shows a significant decline of almost 5 m. This has historically occurred in 2018/2019 during dry period. It is possible that in this area the aquifer is confined.

Hydrograph for PQ05 (**Figure 11** and **Figure 12**) shows that both manual and continuous datalogging data are similar. There are no peaks resulting from recharge as the aquifer has low permeability and groundwater moves via fracture network. The fluctuation in the bore was around 2 m during the year.

In summary, groundwater levels in Peppertree quarry continue to respond to long term weather events. Groundwater levels are within the historically measured data and groundwater flow direction is towards the pit, which is in agreement with historical data.



Figure 11 Hydrographs for Peppertree Quarry bores

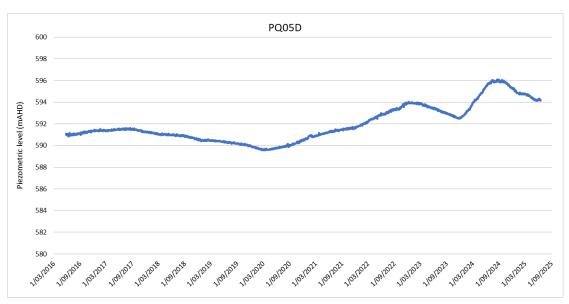


Figure 12 Hydrograph for PQ05 bore- continuous monitoring

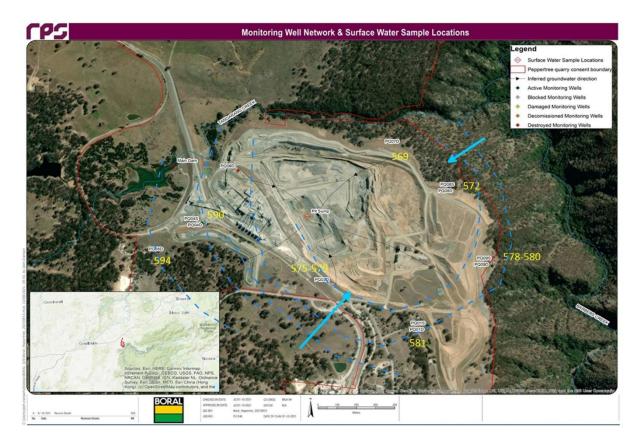


Figure 13 Piezometric levels (in yellow mAHD) and interpreted groundwater contours (dotted blue) and flow direction (blue arrows) for Peppertree monitoring bores

4. GROUNDWATER QUALITY

4.1 Monitoring and analysis

Groundwater quality monitoring is undertaken at MSLM every 6 months (in March and September) for all bores except for MW05 where sampling is undertaken quarterly in accordance with the GWMP (AGE,2021). The sampling and data collation is undertaken by IEC in accordance with the Standard Operating Procedures (SOPs) included in Appendix E of the groundwater management plan (GWMP) (AGE, 2021). No samples were collected during this reporting period from MW08 as it remained dry since installation in March 2025.

4.2 Analytes monitored and trigger values

Groundwater quality monitoring program included the following:

- Field measurement/observations of parameters, including pH, electrical conductivity, temperature, redox potential, colour, odour and sediment load are recorded.
- The water quality analytical suite (analysed by a NATA accredited laboratory):
 - o pH, electrical conductivity and total dissolved solids (calc.);
 - o sodium adsorption ratio (SAR);
 - o total hardness;
 - o ions: anions fluoride, bromide, sulphate, chloride; alkalinity hydroxide, carbonate, bicarbonate and total alkalinity; cations calcium, magnesium, sodium, potassium;

- o total and dissolved metals aluminium, arsenic, beryllium, barium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, strontium, vanadium, zinc, boron, iron and dissolved and total recoverable mercury.
- o dissolved silica; and
- o suspended solids and oil and grease.

Trigger levels in the GWMP are set for:

- EC and pH exceedance of 5th and 95th % for pH and 95th % for EC of baseline data: and
- dissolved metals criteria is the exceedance of ANZG (2018) previously ANZECC (2000) guidelines for beneficial use (stock and irrigation)

The results presented in **Section 4.3** provide the comparison of the monitoring results against the trigger levels set in GWMP (AGC, 2021).

4.3 Groundwater quality results 2024/2025

Field and laboratory results were collated and tabulated in a single database, and the following identified:

- key parameters including pH and EC concentrations that are either greater than the 95th percentile of baseline data or less than the 5th percentile of baseline data.
- ionic balance results which exceed the >± 10% margin
- dissolved metal concentrations that exceed ANZECCC guidelines for beneficial use (stock
 and/or irrigation water as per GWMP). The ANZECC & ARMCANZ 2000 water quality
 guidelines (referenced in ANZG 2018) are not directly applicable for groundwater where water
 extraction for beneficial purposes is not occurring, or the groundwater is not supporting a
 groundwater dependent ecosystem.

Time series plots have been generated for water quality indicators with trigger values based on the 5th and 95th percentile of baseline data for pH and EC and compared with short- and long-term water level trends (**Appendix A**).

All laboratory analytes (metals) have been tabulated and compared against ANZECC guideline values for stock and/or irrigation water (**Table 9**).

Piper diagram has been generated as a visualisation tool to understand the relative major ion abundance and water chemistry at each monitoring site and different geology types. Piper diagrams are useful in identifying differing or mixing, chemistry signatures between hydrostratigraphic units and how signatures change over time. **Figure 14** shows the Piper diagram generated from 2024/2025 data.

4.3.1 Field Parameters

The summary of the results for water quality parameters (EC, pH) indicates (**Table 7**):

• pH varied in all bores from neutral to slightly alkaline, within the historical range with the exception of MW05 where pH varied from neutral to alkaline (7.7 to 9.3). The pH was only slightly above the 95th% in March 2025 for MW03S, slightly below for MW03D and MW04S (Sept 24). In all other events and bores, pH ranged within the trigger level; and

• Groundwater is slightly brackish ranging from 641 to 1860 μS/cm. Salinity was lowest in MW4D (within the operational area or downgradient) and highest in MW04S and MW09 (located to the west) MW6 located to the east of the mining area. MW04S had EC above trigger level in September 24 and March 25. The EC had been above defined trigger in this bore for over 2 years, which would result in trigger level event. As per TARP in the GWMP, Boral undertook an investigation into the elevated EC at this bore and a memo was prepared in November 2024. Given that there was no change in the operation over this time, and this bore is outside of the predicted mining influence, it is likely that this represents natural fluctuation in EC. This is also supported by the fact that there had been no trend in EC over time.

Table 7 Summary of pH and EC results for groundwater bores at MSLM

Monitori	ng bore		pН		EC			
		Observed	5th %	95th%	Observed	95th%		
MW03s	Sep-24	7.52	7.4	7.9	1160	1452		
	Mar-25	8.01	_	7.5	1160	1132		
MW03d	Sep-24	7.28	7.4	0.1	1040	1275		
	Mar-25	8.01		8.1	1060	1375		
MW04s	Sep-24	7.18	7.3	7.0	3230	1720		
	Mar-25	7.68		7.8	2880	1728		
MW4d	Sep-24	7.82	7.7	0.0	868	1204		
	Mar-25	8.35	_ 7.7	8.8	641	1384		
MW05	Sep-24	9.38			1060			
	Dec-24	7.71	_	11.5	1160	1207		
	Mar-25	8.01	_ 6.5	11.5	1190	1386		
	Jun-25	7.76	_		1310			
MW06	Mar-25	7.69	7.1	7.0	1860	2215		
		7.92	_ 7.1	7.9	1780	2315		
MW09	Mar-25	7.75			1780			

Appendix A presents the pH and EC results for each of the bores providing historical data and comparison with results from current reporting period.

4.3.2 Ionic balance results

GWMP requires that analytical results for groundwater samples have ionic balance results which do not exceed the $\ge \pm 10\%$ margin. Laboratory results indicate that there were no exceedances of ionic balance over 10 % margin as shown in **Table 8.**

Table 8 Summary of ionic balance for groundwater samples collected over the 2024/2025

Monitoring bore	Sample date	Ionic balance	
MW03s	Sep-24	1.63	
	Mar-25	3.56	
MW03d	Sep-24	1.59	
	Mar-25	3.40	
MW04s	Sep-24	2.64	
	Mar-25	4.14	
MW4d	Sep-24	1.61	
	Mar-25	5.47	
MW05	Sep-24	0.56	
	Mar-25	4.98	
MW06	Sep-24	0.24	
MW09	Mar-25	4.31	

4.3.3 Dissolved metal concentration

GWMP requires that dissolved metal concentrations that exceed ANZECCC guidelines for beneficial use (stock and/or irrigation water as per GWMP) be reported as exceedance. The ANZECC & ARMCANZ 2000 water quality guidelines (referenced in ANZG 2018) are not directly applicable for groundwater where water extraction for beneficial purposes is not occurring, or the groundwater is not supporting a groundwater dependent ecosystem.

Table 9 provides tabulated summary of dissolved metals in groundwater and comparison with ANZG (2023) draft guidelines for irrigation and livestock drinking water guidelines, as these guidelines have superseded ANZG 2018 guidelines for this category.

Table 9 Summary of hydrogeochemical composition of groundwaters compared to ANZG (2018) guidelines

Analytes	ANZG (2023ab)	MV	V03s	MV	V03d	MV	V04s	M\	W4d	M\	N05	M	W06	MW09
(mg/L)	Irrigation guideline s SGV	Livestock drinking guideline s	Sep-24	Mar-25	Sep-24	Mar-25	Sep-24	Mar-25	Sep-24	Mar-25	Sep-24	Mar-25	Sep-24	Mar-25	Mar-25
Aluminium	20	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	2	0.025	0.076	0.044	0.154	0.054	<0.001	<0.001	0.001	<0.001	0.004	0.008	0.056	0.042	<0.001
Beryllium	0.5	0.06	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Barium	NA	NA	0.143	0.244	0.097	0.092	0.07	0.082	0.086	0.116	0.050	0.048	0.028	0.029	0.060
Cadmium	0.05	0.01	<0.000 1	<0.0001	<0.000 1	<0.0001	<0.000 1	<0.0001	<0.000 1	<0.0001	<0.0001	<0.0001	<0.000 1	<0.0001	<0.0001
Chromium	1	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	0.023	0.007	<0.001	<0.001	<0.001
Cobalt	0.1	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.002	0.002
Copper	5	0.5	<0.001	<0.001	<0.001	0.002	0.002	0.001	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	2	0.1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	10	10	0.257	0.216	0.042	0.002	0.312	0.322	0.052	0.011	0.007	0.005	0.012	0.010	0.104
Molybdenu m	0.05	0.01	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	0.002	0.004	0.008	0.003	<0.001	0.002	0.036
Nickel	2	1	0.002	0.021	<0.001	0.002	<0.001	0.001	0.003	0.007	<0.001	0.001	0.006	0.007	0.001
Selenium	0.05	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	NA	NA	0.575	1.30	0.268	0.292	1.22	1.26	1.01	0.631	0.296	0.316	0.507	0.547	0.375
Vanadium	0.5	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	5	20	0.005	0.007	0.008	0.036	0.016	<0.005	0.006	0.008	<0.005	<0.005	0.015	0.007	0.048
Boron	0.75-15	5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05	<0.05	0.07	<0.05	<0.05
Iron	10	NA	0.64	0.34	1.23	<0.05	2.44	4.25	0.51	<0.05	<0.05	<0.05	0.84	0.42	2.82

Note: Greyed results exceed ANZECC (2000) Guideline

SGV specific guideline value 20 year irrigation

ID insufficient data for guideline development

Results indicate that overall concentration of metals is low, with the exception of arsenic in MW03S, MW03D and MW06, which exceeded livestock drinking water guideline. However, review of historical levels of arsenic in those bores indicates that historically since 2014 the level of arsenic remained constant and above the ANZG (2023) guideline. This indicates that arsenic concentration while above the guidelines is not considered to be exceeding the guidelines as it is within the historical baseline values. Molybdenum has been exceeded in MW09 above the livestock drinking water guidelines (ANZG, 2023), however this is the first reading and therefore likely to be the baseline for this bore.

Appendix B presents dissolved metal results for each of the bores providing historical data and comparison with results from current reporting period. Dissolved metals presented in graphs are selected on the basis of concentration and importance to the environment.

4.3.4 Groundwater chemistry

The major ions for groundwater results are plotted on a Piper diagram (**Figure 14**). A Piper diagram is a trilinear diagram, which has the major ions (cations-sodium, potassium, calcium and magnesium and anions-chloride, sulphate and bicarbonate) expressed in miliequivalents per litre. The diagram is used to classify the water based on major ion results.

In order to allow the water classification, the samples were separated into groups representing different geology/lithology: Adaminaby group sandstone, Carne Dacite. Tuff, and Tangrang dacite or tuff. There is no limestone representation, as MW08 bore was dry during the year.

The results indicate the following:

- Groundwater within tuff formation is typically calcium sulphate type water while Adaminaby sandstone groundwater is calcium bicarbonate water type typical of shallow fresh recharge.
- Undetermined Tangerang formation dacite and/or tuff water have higher bicarbonate composition comparted to tuff and similar sulphate composition.
- Groundwater in Carne Dacite does not fall into any of the water sub-types and represents mixed waters with a range of cation and anion concentration.
- Geochemical fingerprint of dacite is likely due to variability in depth.

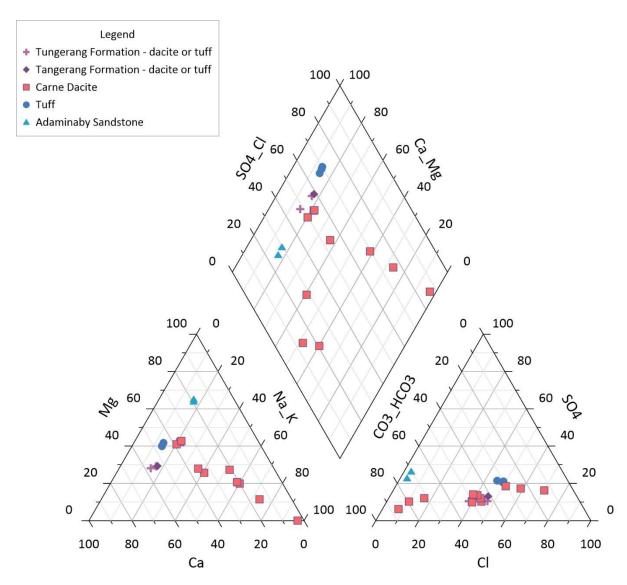


Figure 14 Piper diagram showing distinct groundwater types 2024/2025

5 PRODUCTION BORES

Two production bores were installed in 2021 and were used to supplement mine water supply. The combined abstraction volume was estimated at installation to be in the order of 6 litres per second (L/s) or ~189 mega litres per year (ML/year). Groundwater abstraction from production bores is measured through installed flow meters. The monthly production rates are calculated from the flow meter readings and reported in this groundwater report.

Table 10 shows the flowmeter reading at the start and end of the year. Total used for the year 380.61 ML, which is within the approved WAL. Boral Pty Ltd is in the process of linking the water supply works to WAL41976.

Table 10 Production bore summary

Groundwater extraction		Flowmeter reading (m³) July 2024	Flowmeter reading (m³) July 2025	Used (m ³)	
WB7 North Shep Dv	Dave	9592	40284	30694	
WB07 South Shep Dv	Dave	4072	11439	7367	

There is no other groundwater abstraction incidental or non-incidental on the Mine.

6 GROUNDWATER SEEPAGE

Spring flow and groundwater seepage is being monitored through the surface water monitoring plan. Data gathered through the surface water monitoring program has been reported by comparing it with the annual groundwater data in the annual groundwater review. Hydrographs have also been compared between monitoring locations to reveal more significant changes in water level from climatic conditions and are linked with spring flow observations as reported in **Section 3.2.**

The surface water management plan provides trigger parameters for observed spring flow and is reported in annual report. Groundwater seepage is monitored via spring flow at "Blow hole" and any significant changes reported here.

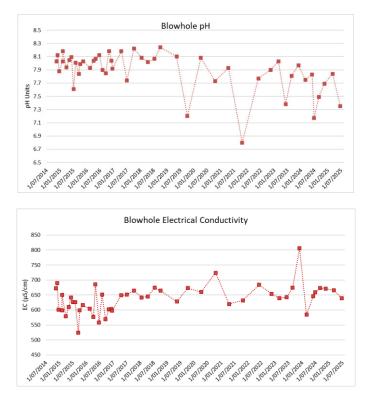


Figure 15 Time series – Groundwater seepage and GDEs as observed in Blowhole basic water quality parameters

Figure 15 shows the fluctuation in basic water quality parameters during current reporting period and provide comparison with historical data. It can be observed that there were no changes in pH and EC over the reporting period compared to historical data. Therefore, the impact of mining on groundwater seepage and GDEs is considered to be negligible.

EIS (Element Environment, 2019) indicated that recharge from bedrock into Bungonia Creek was likely to only reduce by 1% due to the Project and it is unlikely to have a detrimental impact on creek flow. Therefore, they predicted that impacts on the water quality of the creeks caused by incidental water take were likely to be minimal. Reporting on alluvial aquifers is addressed by observing changes in Bungonia Creek water quality (**Figure 16**). Basic water quality parameters during this reporting period remain within historical range. Therefore, no impact from mining on baseflow is observed.

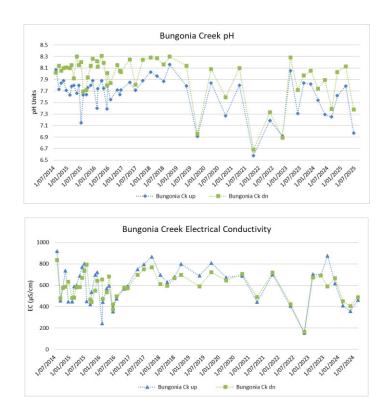


Figure 16 Time series – Baseflow observed in Bungonia Creek basic water quality parameters

7 CONCLUSIONS AND RECOMMENDATIONS

The review of groundwater levels and water quality was undertaken as an annual update related to the operation of the MSLM for the period from July 2024 to June 2025. The report discusses potential impact from operation on the groundwater system, nearby private bores, and ecosystems during this period. The following are the findings of the study:

- Groundwater levels responded to wetter and drier climate events within historically observed fluctuation. Groundwater level in MW06 bore decreased below 5th % during March but has recovered since, therefore no trigger event occurred.
- Highest groundwater level is recorded in the west of the Mine, (MW03D and MW9) and lowest

in the east. There is limited influence from extraction activities on groundwater with the exception of MW05. At MW05 the drawdown is likely to be in response to production bore pumping.

- Groundwater levels in Peppertree quarry continue to respond to long term weather events. Groundwater levels are within the historically measured data and groundwater flow direction is towards the pit, which agrees with historical data
- Interpreted equipotential lines were prepared for MSLM although not all bores are installed at the same aquifer depth. Interpreted groundwater flow is towards the east and southeast and unchanged from that reported in the GWMP (AGE, 2021). Peppertree Quarry groundwater flow has been interpreted towards the currently mined pit which is agreement with previously reported.
- pH varied in all bores from neutral to slightly alkaline, within the historical range. The pH was only slightly above the 95th% in March 2025 for MW03S, slightly below for MW03D and MW04S (Sept24). In all other events and bores pH ranged within the trigger level;
- Groundwater is fresh to slightly brackish ranging from 641 to 1860 µS/cm. Overall recorded EC levels were within the historical range and below trigger levels. The EC had been above defined trigger in MW04S for over 2 years, which would result in trigger level event. As per TARP, Boral undertook an investigation into the elevated EC and a memo was prepared in November 2024. The investigation recommended that bore development be undertaken, suggested a change of sampling method, and an update of the TARP to reflect natural change in water quality with data from 2020 onwards to be included. Given that there was no change in the operation over this time, and this bore is outside of the predicted mining influence, it is likely that this represents natural fluctuation in EC. This is also supported by the fact that there had been no trend in EC over time.
- There were no exceedances of ionic balance over 10 % margin as per GWMP (AGE, 2021)
- Analysis of dissolved metals in groundwater indicates that overall concentration of metals is low, with the exception of arsenic in MW03S, MW03D and MW06, which exceeded livestock drinking water guideline (draft ANZG, 2023). However, review of historical levels of arsenic in those bores indicates that historically since 2014 the level of arsenic remained at stable level. TARP may need to be updated for this parameter.
- Groundwater within tuff formation is typically calcium sulphate type water while Adaminaby sandstone groundwater is calcium bicarbonate water type typical of shallow fresh recharge.
- Undetermined Tangerang formation dacite and/or tuff water have higher bicarbonate composition comparted to tuff and similar sulphate composition. Groundwater in Carne Dacite does not fall into any of the water sub-types and represents mixed waters with a range of cation and anion concentration.
- Spring flow and groundwater seepage monitored via Blowhole indicates that there had been no change in water chemistry over the past year. Similarly, baseflow chemistry monitored in Bungonia Creek indicates no change in water chemistry over the past period.
- Pumping from production bores was within the approved WAL held by Boral for the MSLM.
- No impact from the Quarry operations has been observed on the groundwater system, surface

expression of groundwater and private bores.

Potential impact of the MSLM has been reviewed in accordance with the GWMP (AGE, 2021):

- Water level changes due to water take, drawdown and aquifer interconnectivity:
 - Water supply bores no more than 2 m drawdown was observed at monitoring bores MW3D, MW4D, MW8, MW9
 - o GDEs no adverse observed impact compared to historical events
 - Regional Monitoring bores- as observed by monitoring network drawdown in excess of 2 m was observed in MW05 resulting from production bore pumping but is confined to the vicinity of this bore. No regional or other Mine monitoring bores are impacted.
- Water quality changes due to mining, final void and emplacement:
 - Water supply bores- there has been no change in beneficial use category (domestic and drinking water)
 - o GDEs and springs there has been no change in ANZG (2018) aquatic ecosystem water quality as observed in monitoring bores
 - Mine monitoring bores- no change in beneficial use category irrigation and stock. Exceedance where reported is due to elevated baseline data.
 - o Groundwater inflow into the pit- no pit inflow has been observed
 - Water loss/seepage from water storages into groundwater system no change in water levels in monitoring bores MW06, MW07 and MW08.

The following is recommended:

- o TARP to be updated to reflect natural change in water quality and groundwater level over time (data from 2020 to 2024 need to be included in the assessment)
- A list of receiving receptors be provided and the groundwater quality data reviewed such that it provides the early warning – use of trend or derivation of Mine specific guidelines rather than default value

8. REFERENCES

Australian and New Zealand Guidelines for Fresh and Marine Water Quality ANZG 2018. Volume 1, The guidelines /Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand.

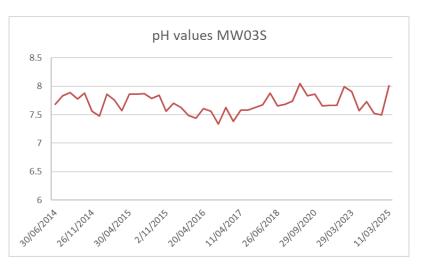
Australian Groundwater Consultants (2021) Groundwater management plan, prepared for Boral Marula South Mine.

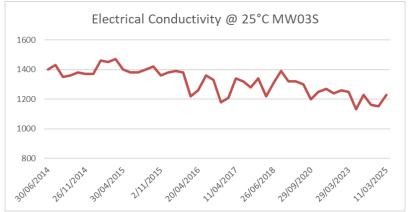
ANZG (2023a). Water Quality for Irrigation and General Water Uses: Guidelines. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand governments and Australian state and territory governments, Canberra.

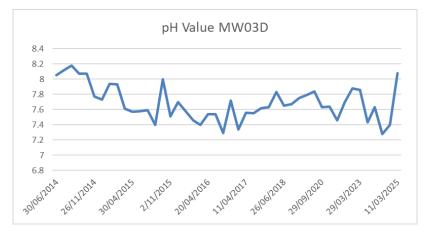
ANZG (2023b). Livestock drinking water guidelines. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra.

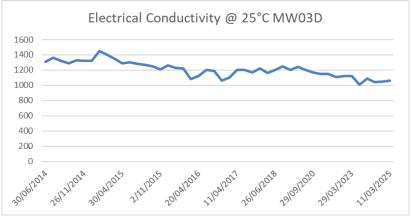
Bureau of Meteorology, 2025 Groundwater Dependent Ecosystems Atlas, accessed 20 June 2025 from http://www.bom.gov.au/water/groundwater/gde/index.shtml

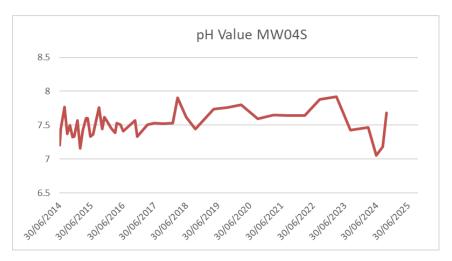
NSW Office of Water and the OEH, 2012 Risk assessment guidelines for groundwater dependent ecosystem

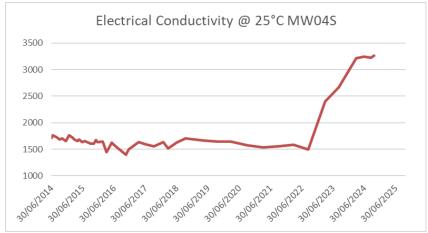

LIMITATIONS

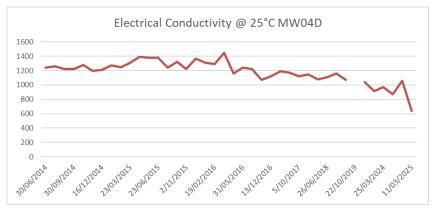

K.David has prepared this report for the use of Boral in accordance with the standard terms and conditions of the consulting profession. This report is prepared in accordance with the agreed scope of work. The methodology adopted and sources of information used are outlined in the report.

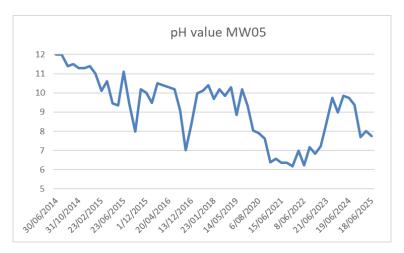

The report was prepared during July/August 2025 and is based on the information reviewed at the time of preparation. The report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose by third parties.

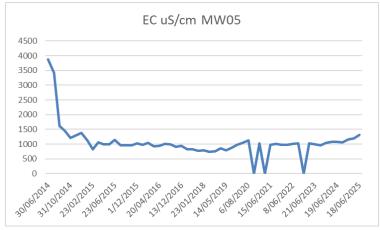

۸	DD.	FM	\mathbf{D}	\mathbf{v}	٨

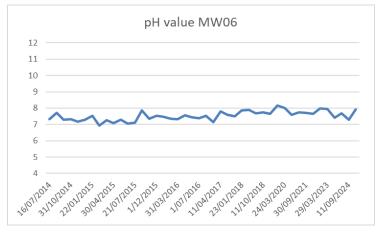

Time series groundwater data for pH and EC

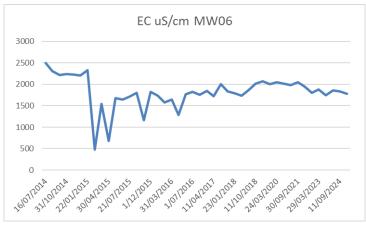


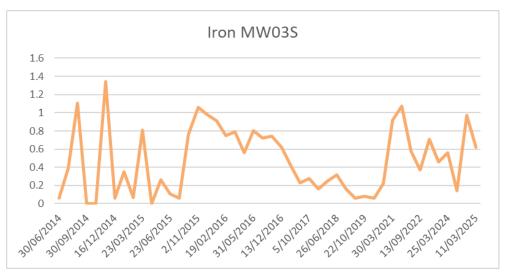


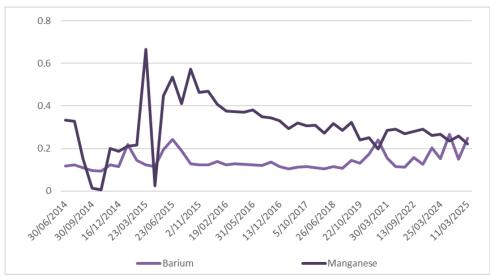


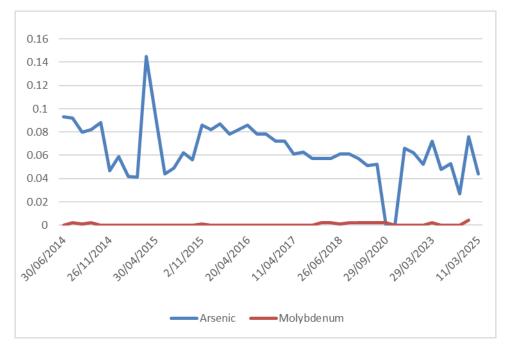


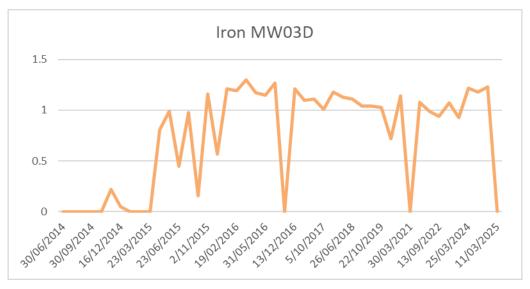












APPENDIX B								
Time series groundwater data for dissolved metals								

