

# Boral Cement Limited Berrima Works

# Non-Standard Fuels Pollutant Tracking Second Half Year Report

April 2024



### **Table of Contents**

| 1. | Introd | luction                                           | 1 |
|----|--------|---------------------------------------------------|---|
|    | 1.1    | Stack Testing Result                              | 2 |
|    | 1.2    | Raw Material Inputs                               | 3 |
|    | 1.3    | Kiln Fuel Inputs                                  | 4 |
|    | 1.4    | Total Fuel Inputs and Associated Emission Factors | 5 |
|    |        |                                                   |   |



### 1. Introduction

In July 2015, Boral sought approval to modify the consent for the Berrima Cement Works to enable the use of Solid Waste Derived Fuel (SWDF) as an energy source. Modification 9 to the consent DA 401-11-2002 was subsequently approved which included a number of additional monitoring and management conditions covering the use of these alternative fuels. The consent also separated the use of standard fuels, being traditional coal and coal derivatives along with diesel for start-up and non-standard fuels being derived from waste. Non-Standard Fuels (NSF) is the broad term now used to cover the various waste derived fuels approved to be used in the cement plant.

Boral commenced using two types of NSF in August 2018, including Wood Waste (WW) and Refuse Derived Fuels (RDF) known as Solid Waste Derived Fuels (SWDF). Both materials have undergone separation and screening processes to remove contaminants such as, glass and metals. Product specifications have been established and Quality Assurance/Quality Control (QA/QC) procedures implemented.

As per condition 3.22 of the DA, Boral are required to implement a tracking program to undertake:

- a) Batch analysis of non-standard fuels received at the development as provided by suppliers and the results of any check analysis carried out by the applicant as part of the quality control management procedures
- b) A mass inventory of each pollutant entering the process in raw materials, conventional fuels and non-standard fuels, with particular attention to, but not limited to chlorine, mercury cadmium and chromium.
- c) Calculate emission factors for each pollutant based on inputs, outputs and measured air emissions and a variance in the emission factors from period to period.
- d) Any adjustments that may be necessary to non-standard fuel specifications from the tracking analysis.

The initial period of use of SWDF was part of a Proof of Performance Trial which included the submission of monthly reports and a Proof of Performance Trial Consolidated Six Month Report for Solid Waste Derived Fuels on 28 February 2019. On the 23 April 2019 the Department of Planning and Environment approved the ongoing use of SWDF following consultation with the EPA subject to:

- a) Limiting the amount of SWDF to be fired in Kiln 6 to 40%, as a percentage of total fuel
- b) Periodic stack testing being undertaken every three months for the first 12 months of use of SWDF. The monitored pollutants must be consistent with the requirements of the Environment Protection Licence (EPL 1698)
- c) Provision of a monitoring report that outlines the results of quarterly stack testing required in (a) and provides an assessment of compliance against the air emissions limits for the facility, to the satisfaction of the Secretary
- d) Periodic measurements of hydrogen chloride (HCL) taken every 3 months until such time the Secretary agrees the accuracy of the HCL CEMS is confirmed through successful calibration audits undertaken in accordance with USEPA Performance Specification 18.



Condition 3.23 of the DA required Boral Cement to submit a report that assesses the results of the tracking program every 3 months in the first year of operating non-standard fuels under this consent to be synchronised with stack testing and every six months thereafter.

The following report is covering detailed findings from the non-standard fuels Pollutant Tracking Program for the biannual testing following the approval for continual use of SWDF. This report incorporates the requirements of Condition 3.23.

As part of the tracking program we consolidate all raw material and fuel specification testing against quantities used and compare this to actual stack testing to determine an emission factor by unit of input by chemical.

#### 1.1 Stack Testing Result

On the 30<sup>th</sup> April and 1<sup>st</sup> May 2024 stack testing undertaken at Berrima Cement was compliant with the licence limits as summaries in Table 1 below. A copy of the full report numbered R016899-1 is attached. Metals and Chlorine are outlined in the pollutant tracking discussion. Emissions were in compliance with the Environment Protection Licence 1698.

|                                         |       |        | 30 April & 1 |
|-----------------------------------------|-------|--------|--------------|
|                                         |       |        | May 24       |
| Parameter                               | Unit  | Limits | R016899-1    |
| Mercury                                 | mg/m3 | 0.05   | <0.02        |
| Type 1 and type 2 substances            | mg/m3 | 0.5    | <0.008       |
| Solid particles                         | mg/m3 | 50     | 30           |
| Nitrogen oxides                         | mg/m3 | 1250   | 750          |
| Cadmium and Thallium                    | mg/m3 | 0.05   | <0.005       |
| Chlorine                                | mg/m3 | 50     | 0.49         |
| Dioxine and Furans (I-TEQ middle bound) | ng/m3 | 0.1    | 0.0033       |
| Hydrogen chloride (HCI)*                | mg/m3 | 10     | 0.96         |
| Hydrogen fluoride                       | mg/m3 | 1      | <0.004       |
| Sulfur dioxide                          | mg/m3 | 50     | <0.031       |
| Sulfuric acid mist and sulfur trioxide  | mg/m3 | 50     | 0.064        |
| Volatiles organic compounds             | mg/m3 | 40     | 1.9          |

\*Note that HCl is well below the limit of 10mg/m3.



#### 1.2 Raw Material Inputs

The raw materials used within Kiln 6 include Limestone, Yellow Shale, Blue Shale, Steel Slag and Granulated Blast Furnace Slag. Table 2 summaries the percentage of each raw material input used, the chemical properties of each of the raw material inputs, and the total chemical properties of the raw feed combined in use during the stack testing in October 2023.

Table 2 – Raw Material Input Quantities and Chemical Properties

| 01           | 1           | F            | F            | F          | F     | F          | 5              | Proved Proved |
|--------------|-------------|--------------|--------------|------------|-------|------------|----------------|---------------|
| Chemical     | -           | Feed Source1 |              |            |       |            | Feed Source3.1 | Final Feed    |
| Properties   |             | Limestone    | Yellow Shale | Blue Shale | GYP   | Steel Slag | GBFS           |               |
|              | Set Point % | 81.50%       | 3.70%        | 9.00%      | 0.00% | 2.00%      | 5.00%          | 101.20%       |
| Arsenic      | As (mg/kg)  | 5.6          | 14.2         | 10.2       |       | 1.8        | 1.0            | 6.09          |
| Beryllium    | Be (mg/kg)  | 0.1          | 1.0          | 0.9        |       | 0.3        | 6.4            | 0.53          |
| Cadmium      | Cd (mg/kg)  | 0.2          | 0.3          | 0.1        |       | 0.1        | 0.1            | 0.19          |
| Chromium     | Cr (mg/kg)  | 4.6          | 52.2         | 23.8       |       | 1580       | 45.7           | 41.71         |
| Cobalt       | Co (mg/kg)  | 1.9          | 9.7          | 14.2       |       | 1.9        | 0.3            | 3.24          |
| Copper       | Cu (mg/kg)  | 2.7          | 17.4         | 34.9       |       | 30.1       | 1.4            | 6.66          |
| Mercury      | Hg (mg/kg)  | 0.1          | 0.1          | 0.1        |       | 0.1        | 0.1            | 0.10          |
| Manganese    | Mn (mg/kg)  | 173          | 517          | 943        |       | 23000      | 3150           | 862.49        |
| Nickel       | Ni (mg/kg)  | 4.2          | 19.8         | 21.9       |       | 11.5       | 0.9            | 6.40          |
| Lead         | Pb (mg/kg)  | 3.2          | 24.3         | 15.7       |       | 1.4        | 0.3            | 4.96          |
| Antimony     | Sb (mg/kg)  | 0.4          | 0.7          | 0.2        |       | 0.2        | 0.1            | 0.38          |
| Selenium     | Se (mg/kg)  | 1            | 1            | 1          |       | 1          | 2              | 1.06          |
| Tin          | Sn (mg/kg)  | 0.1          | 1.4          | 0.4        |       | 1.7        | 0.1            | 0.21          |
| Vanadium     | V (mg/kg)   | 5            | 53           | 49         |       | 3940       | 137            | 96.10         |
| Thallium     | Th (mg/kg)  | 0.1          | 0.2          | 0.1        |       | 0.1        | 0.1            | 0.10          |
| Chlorine     | CI (mg/kg)  | 20           | 20           | 20         |       | 10         | 410            | 39.540        |
| mat/kg clink | ker         |              |              |            |       |            |                | 1.55          |

To interpret the table, 81.50% of the raw material is limestone. Within limestone there is 5.6 mg/kg of Arsenic (As), while yellow shale used at 3.70% contained 14.2 mg/kg of As. Combined with the other raw materials of blue shale, steel slag and granulated blast furnace slag, the total As of raw feed is 6.09 mg/kg.

To produce 1 kg of clinker, 1.55 kg of raw materials are required.



#### 1.3 Kiln Fuel Inputs

The fuel in use at Berrima during normal operating conditions i.e. excluding start-up conditions includes Coal and Solid Waste Derived fuels Wood Waste and Refuse Derived Fuel.

|               |             | Kiln Fuel - Input                                                                                               |               |                  |               |             |  |  |  |
|---------------|-------------|-----------------------------------------------------------------------------------------------------------------|---------------|------------------|---------------|-------------|--|--|--|
| Chemical      |             | Fuel Source                                                                                                     | Fuel Source 2 | uel Source       | Fuel Source 4 | Final       |  |  |  |
| Properties    |             | Coal                                                                                                            | Wood Benedic  | <b>RDF Bingo</b> | Wood Brandown | Fuel - Kiln |  |  |  |
|               | Set Point % | 66.98%                                                                                                          | 12.97%        | 16.66%           | 3.39%         | 100.00%     |  |  |  |
| Arsenic       | As (mg/kg)  | 0.4                                                                                                             | 124           | 37               | 16            | 23          |  |  |  |
| Beryllium     | Be (mg/kg)  | 0.7                                                                                                             | 1             | 1                | 1             | 0           |  |  |  |
| Cadmium       | Cd (mg/kg)  | 0.1                                                                                                             | 1             | 1                | 1             | 0           |  |  |  |
| Chromium      | Cr (mg/kg)  | 1.1                                                                                                             | 166           | 61               | 37            | 33          |  |  |  |
| Cobalt        | Co (mg/kg)  | 0.6                                                                                                             | 1             | 2                | 1             | (           |  |  |  |
| Copper        | Cu (mg/kg)  | 10.9                                                                                                            | 95            | 43               | 22            | 27          |  |  |  |
| Mercury       | Hg (mg/kg)  |                                                                                                                 | 0.05          | 0.05             | 0.05          |             |  |  |  |
| Manganese     | Mn (mg/kg)  | the second se | 36            | 42               | 61            | 116         |  |  |  |
| Nickel        | Ni (mg/kg)  | 0.4                                                                                                             | 1             | 2                | 2             | 0           |  |  |  |
| Lead          | Pb (mg/kg)  | 13.1                                                                                                            | 25            | 45               | 6             | 15          |  |  |  |
| Antimony      | Sb (mg/kg)  |                                                                                                                 | 3             | 44               | 2             | 1           |  |  |  |
| Selenium      | Se (mg/kg)  |                                                                                                                 | 1             | 1                | 1             |             |  |  |  |
| Tin           | Sn (mg/kg)  |                                                                                                                 | 1             | 1                | 2             | (           |  |  |  |
| Vanadium      | V (mg/kg)   | 4                                                                                                               | 1             | 2                | 3             | 3           |  |  |  |
| Thallium      | Th (mg/kg)  | 0.1                                                                                                             | 1             | 1                | 1             | 0           |  |  |  |
| Chlorine      | CI (mg/kg)  | 10                                                                                                              | 0.04          | 0.1              | 0.29          | 6.7         |  |  |  |
| fuel/kg clink | er          | 0.1126                                                                                                          | 0.0218        | 0.028            | 0.0057        | 0.1         |  |  |  |

#### Table 3 – Kiln Fuel Input Quantities and Chemical Properties

Table 3 details the inventory of fuel input and the percentage of each fuel used. As can be seen 66.98% of the fuel in use was coal, with SWDF accounting for 33.02% total fuel, split between RDF and Wood.

Taking As as an example, coal contains 0.4 mg/kg and RDF 37 mg/kg. As makes up 23.1 mg/kg in the total fuel.

To produce 1kg of Clinker a total of 0.168 kg of fuel is consumed.



#### 1.4 Total Fuel Inputs and Associated Emission Factors

Table 4 collates the raw material and fuel inputs comparing to stack emissions to calculate an emission factor per unit of chemical input.

#### Table 4 – Emissions Factors per unit of input for raw materials and fuel

|           | Raw material + Fuel |                 |           |                 |
|-----------|---------------------|-----------------|-----------|-----------------|
|           | Total Input         | Stack Emissions |           | Emission factor |
|           | Raw material + Fuel |                 |           |                 |
|           |                     |                 |           |                 |
|           | mg/kg clk           | mg/Nm3          | mg/kg clk | from input      |
| Arsenic   | 13.32               | 0.002           | 0.00523   | 0.00039         |
| Beryllium | 0.95                | 0.0006          | 0.00157   | 0.00165         |
| Cadmium   | 0.36                | 0.00074         | 0.00193   | 0.00535         |
| Chromium  | 70.31               | 0.0018          | 0.00471   | 0.00007         |
| Cobalt    | 5.17                | 0.0008          | 0.00209   | 0.00040         |
| Copper    | 14.95               | 0.0015          | 0.00392   | 0.00026         |
| Mercury   | 0.17                | 0.02            | 0.05229   | 0.30598         |
| Manganese | 1356.40             | 0.0078          | 0.02039   | 0.00002         |
| Nickel    | 10.06               | 0.0019          | 0.00497   | 0.00049         |
| Lead      | 11.01               | 0.0019          | 0.00497   | 0.00045         |
| Antimony  | 1.92                | 0.005           | 0.01307   | 0.00681         |
| Selenium  | 1.81                | 0.0076          | 0.01987   | 0.01095         |
| Tin       | 0.43                | 0.002           | 0.00523   | 0.01219         |
| Vanadium  | 149.49              | 0.001           | 0.00261   | 0.00002         |
| Thallium  | 0.23                | 0.002           | 0.00523   | 0.02280         |
| Chlorine  | 62.418              | 0.33            | 0.86279   | 0.01382         |

Taking As as an example, the total As concentration for inputs into the kiln per kg of clinker produced is calculated by (raw material chemical/kg X kg materials/kg clinker) + (Kiln fuel chemical/kg X kiln fuel kg/kg clinker).

(6.09\*1.55) + (23.1\*0.168) = 13.32 mg/kg clinker

The emission factor per unit of input for As is calculated by dividing the calculated emissions per kg of clinker by the total As input.

0.00523/13.32 = 0.00039



Table 5 is similar to Table 4 but calculates an emission factor based on the fuel only.

|           | Total Input | Stack Er | nissions  | Emission facto |  |  |
|-----------|-------------|----------|-----------|----------------|--|--|
|           | Fuel only   |          |           |                |  |  |
|           | mg/kg clk   | mg/Nm3   | mg/kg clk | from input     |  |  |
| Arsenic   | 3.88        | 0.002    | 0.00523   | 0.00135        |  |  |
| Beryllium | 0.13        | 0.0006   | 0.00157   | 0.01168        |  |  |
| Cadmium   | 0.07        | 0.00074  | 0.00193   | 0.02898        |  |  |
| Chromium  | 5.66        | 0.0018   | 0.00471   | 0.00083        |  |  |
| Cobalt    | 0.15        | 0.0008   | 0.00209   | 0.01385        |  |  |
| Copper    | 4.63        | 0.0015   | 0.00392   | 0.00085        |  |  |
| Mercury   | 0.01        | 0.02     | 0.05229   | 3.72572        |  |  |
| Manganese | 19.54       | 0.0078   | 0.02039   | 0.00104        |  |  |
| Nickel    | 0.13        | 0.0019   | 0.00497   | 0.03701        |  |  |
| Lead      | 3.31        | 0.0019   | 0.00497   | 0.00150        |  |  |
| Antimony  | 1.33        | 0.005    | 0.01307   | 0.00982        |  |  |
| Selenium  | 0.17        | 0.0076   | 0.01987   | 0.11821        |  |  |
| Tin       | 0.11        | 0.002    | 0.00523   | 0.04922        |  |  |
| Vanadium  | 0.55        | 0.001    | 0.00261   | 0.00479        |  |  |
| Thallium  | 0.07        | 0.002    | 0.00523   | 0.07833        |  |  |
| Chlorine  | 1.131       | 0.33     | 0.86279   | 0.76264        |  |  |

#### Table 5 – Emissions Factor fuel only

Any variance to the Emissions Factors in Table 4 & Table 5 can be used to determine the contribution from either raw materials, standard and non-standard fuels.



#### 1.5 Alternate Fuel Inputs and Total Inputs Raw Material and Fuel

Table 6 show the Alternate Fuel inputs against the total raw material and fuel inputs per unit of clinker produced.

#### Table 6 – Alternate Fuels inputs compared to total inputs from Raw materials and Fuels

|           | Input                              |                   |                |  |  |  |  |  |
|-----------|------------------------------------|-------------------|----------------|--|--|--|--|--|
|           | Total Input<br>Raw material + Fuel | Alternative Fuels |                |  |  |  |  |  |
|           |                                    |                   |                |  |  |  |  |  |
|           | mg/kg clk                          | mg/kg clk         | % input from A |  |  |  |  |  |
| Arsenic   | 13.32                              | 3.83              | 28.76%         |  |  |  |  |  |
| Beryllium | 0.95                               | 0.06              | 5.85%          |  |  |  |  |  |
| Cadmium   | 0.36                               | 0.06              | 15.36%         |  |  |  |  |  |
| Chromium  | 70.31                              | 5.54              | 7.88%          |  |  |  |  |  |
| Cobalt    | 5.17                               | 0.08              | 1.61%          |  |  |  |  |  |
| Copper    | 14.95                              | 3.40              | 22.75%         |  |  |  |  |  |
| Mercury   | 0.17                               | 0.00              | 1.62%          |  |  |  |  |  |
| Manganese | 1356.40                            | 2.31              | 0.17%          |  |  |  |  |  |
| Nickel    | 10.06                              | 0.09              | 0.89%          |  |  |  |  |  |
| Lead      | 11.01                              | 1.84              | 16.71%         |  |  |  |  |  |
| Antimony  | 1.92                               | 1.31              | 68.22%         |  |  |  |  |  |
| Selenium  | 1.81                               | 0.06              | 3.06%          |  |  |  |  |  |
| Tin       | 0.43                               | 0.06              | 14.26%         |  |  |  |  |  |
| Vanadium  | 149.49                             | 0.09              | 0.06%          |  |  |  |  |  |
| Thallium  | 0.23                               | 0.06              | 24.20%         |  |  |  |  |  |
| Chlorine  | 62.42                              | 0.01              | 0.01%          |  |  |  |  |  |

Taking As as an example, the total As concentration for inputs into the kiln per kg of clinker produced is 13.32 mg/kg clinker (see calculation for table 4)

The total As concentration for inputs from Alternate fuel is 3.83 mg/kg clinker. This represents 28.76% of the total As input in the process.

3.83/13.32 \*100 = 28.76%

Boral Cement Ltd, Berrima

Half-Yearly Emission Testing Compliance Report

Report R016899-1[DRAFT]



Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

ektimo.com.au

#### **Document Information**

| Client Name:        | Boral Cement Ltd (Berrima)            |
|---------------------|---------------------------------------|
| Report Number:      | R016899-1[DRAFT]                      |
| Date of Issue:      | 17 June 2024                          |
| Attention:          | Gabriel Paicu                         |
| Address:            | Taylor Avenue<br>New Berrima NSW 2577 |
| Testing Laboratory: | Ektimo Pty Ltd, ABN 86 600 381 413    |

#### **Report Authorisation**



Adnan Latif Air Monitoring Consultant NATA Accredited Laboratory No. 14601 Aaron Davis Ektimo Signatory

This document is confidential and is prepared for the exclusive use of Boral Cement Ltd (Berrima) and those granted permission by Boral Cement Ltd (Berrima). The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

#### **Table of Contents**

| 1  | E    | xecutive Summary                                |
|----|------|-------------------------------------------------|
|    | 1.1  | Background4                                     |
|    | 1.2  | Project Objective & Overview                    |
|    | 1.3  | Licence Comparison                              |
| 2  | R    | esults 6                                        |
|    | 2.1  | EPA ID 2 – No. 6 Kiln Stack                     |
| 3  | S    | ample Plane Compliance                          |
|    | 3.1  | EPA ID 2 – No. 6 Kiln Stack                     |
| 4  | P    | lant Operating Conditions                       |
| 5  | Т    | est Methods                                     |
| 6  | ۵    | Deviations to Test Methods                      |
| 7  | C    | Quality Assurance/Quality Control Information14 |
| 8  | ۵    | Definitions                                     |
| 9  | A    | ppendices                                       |
| Ap | open | dix A: Site Images                              |
| Ap | open | dix B: Chains of Custody                        |

Appendix C: Laboratory Results

#### **1** Executive Summary

#### 1.1 Background

Ektimo was engaged by Boral Cement Ltd (Berrima) to perform emission testing as requested.

#### **1.2** Project Objective & Overview

The objective of the project was to conduct a monitoring programme to quantify emissions from EPA ID 2 – No. 6 Kiln Stack to determine compliance with Boral Cement Ltd's Environmental Protection Licence, 1698.

Monitoring was performed as follows:

| Location                    | Test Date     | Test Parameters*                                                                                                                                                                                                                                        |  |  |  |  |
|-----------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                             | 30 April 2024 | Solid particles<br>Sulfuric acid mist and sulfur trioxide (as SO <sub>3</sub> ), sulfur dioxide<br>Speciated volatile organic compounds (VOCs)<br>Type 1 & 2 substances in aggregate (Sb, As, Cd, Pb, Hg, I<br>Cr, Co, Mn, Ni, Se, Sn, V) plus thallium |  |  |  |  |
| EPA ID 2 – No. 6 Kiln Stack | 1 May 2024    | Dioxins & furans (PCDD & PCDF)<br>Hexavalent chromium<br>Nitrogen oxides (NOx), carbon monoxide (CO), carbon<br>dioxide (CO <sub>2</sub> ), oxygen (O <sub>2</sub> )<br>Total fluoride<br>Hydrogen chloride, chlorine                                   |  |  |  |  |

\* Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP.

Plant operating conditions have been noted in this report.

#### 1.3 Licence Comparison

The following licence comparison table shows all analytes are within the licence limit set by the NSW EPA as per licence 1698 (last amended on 29 April 2024).

| ЕРА                      | Parameter                                           | Units             | Licence limit | Detected values | Detected values<br>(corrected to 10% O <sub>2</sub> ) |
|--------------------------|-----------------------------------------------------|-------------------|---------------|-----------------|-------------------------------------------------------|
|                          | Mercury                                             |                   | 0.05          | <0.02           | <0.02                                                 |
|                          | Type 1 and Type 2 substances in aggregate           | mg/m <sup>3</sup> | 0.5           | <0.08           | <0.08                                                 |
|                          | Solid particles                                     | mg/m <sup>3</sup> | 50            | 29              | 30                                                    |
|                          | Nitrogen oxides                                     | mg/m <sup>3</sup> | 1250          | 810             | 750                                                   |
|                          | Cadmium + Thallium                                  | mg/m <sup>3</sup> | 0.05          | ≤0.005          | ≤0.005                                                |
| EPA 2 - Kiln Stack No. 6 | Chlorine                                            | mg/m <sup>3</sup> | 50            | 0.47            | 0.49                                                  |
| EPA 2 - KIIN STACK NO. 6 | Dioxins & furans (I-TEQ middle bound)               | ng/m <sup>3</sup> | 0.1           | 0.0034          | 0.0033                                                |
|                          | Hydrogen chloride                                   | mg/m <sup>3</sup> | 10            | 0.93            | 0.96                                                  |
|                          | Hydrogen fluoride                                   | mg/m <sup>3</sup> | 1             | <0.04           | <0.04                                                 |
|                          | Sulfur dioxide                                      | mg/m <sup>3</sup> | 50            | ≤0.03           | ≤0.031                                                |
|                          | Sulfuric acid mist and sulfur trioxide (as $SO_3$ ) | mg/m <sup>3</sup> | 50            | 0.062           | 0.064                                                 |
|                          | Volatile organic compounds                          | mg/m <sup>3</sup> | 40            | 1.9             | 1.9                                                   |

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

#### Results 2

#### 2.1 EPA ID 2 – No. 6 Kiln Stack

| Date                                    | 1/05/2024                   |                         |                         |                  | Client                | Boral Cement          |                |                       |                       |                |
|-----------------------------------------|-----------------------------|-------------------------|-------------------------|------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|
| Report                                  | R016899                     |                         |                         |                  | Stack ID              | EPA 2: No.6 Kil       | n Stack        |                       |                       |                |
| Licence No.                             | 1698                        |                         |                         |                  | Location              | New Berrima           |                |                       |                       |                |
| Ektimo Staff                            | Adnan Latif / James Cu      |                         |                         |                  | State                 | NSW                   |                |                       |                       |                |
| Process Conditions                      | Please refer to client r    | ecords.                 |                         |                  |                       |                       |                |                       |                       | 240424         |
| Stack Parameters                        |                             |                         |                         |                  |                       |                       |                |                       |                       |                |
| Moisture content, %v/v                  |                             |                         |                         | 14               |                       |                       |                |                       |                       |                |
| Gas molecular weight, g/g r             | mole                        |                         |                         | 29.6 (wet)       |                       |                       | 31.5 (dry)     |                       |                       |                |
| Gas density at STP, kg/m <sup>3</sup>   |                             |                         |                         | 1.32 (wet)       |                       |                       | 1.41 (dry)     |                       |                       |                |
| Gas density at discharge cor            | nditions, kg/m <sup>3</sup> |                         |                         | 0.84             |                       |                       | 1.11(0.7)      |                       |                       |                |
| % Oxygen correction & Fact              |                             |                         |                         | 10 %             |                       |                       | 0.99           |                       |                       |                |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                             |                         |                         |                  |                       |                       |                |                       |                       |                |
| Gas Flow Parameters                     |                             |                         |                         |                  |                       |                       |                |                       |                       |                |
| Flow measurement time(s)                | (hhmm)                      |                         |                         | 1044 & 1334      |                       |                       |                |                       |                       |                |
| Temperature, °C                         |                             |                         |                         | 127              |                       |                       |                |                       |                       |                |
| Temperature, K                          |                             |                         |                         | 401              |                       |                       |                |                       |                       |                |
| Velocity at sampling plane,             | m/s                         |                         |                         | 28               |                       |                       |                |                       |                       |                |
| Volumetric flow rate, actua             | ıl, m³/s                    |                         |                         | 200              |                       |                       |                |                       |                       |                |
| Volumetric flow rate (wet S             |                             |                         |                         | 130              |                       |                       |                |                       |                       |                |
| Volumetric flow rate (dry S             |                             |                         |                         | 110              |                       |                       |                |                       |                       |                |
| Mass flow rate (wet basis),             | kg/h                        |                         |                         | 600000           |                       |                       |                |                       |                       |                |
| Gas Analyses Besult-                    |                             |                         | Average                 |                  |                       | Minimum               |                |                       | Maximum               | 1              |
| Gas Analyser Results                    | Sampling time               |                         | Average<br>1055 - 1257  |                  |                       | 1055 - 1257           |                |                       | 1055 - 1257           |                |
|                                         | sampring dime               |                         | Concentration           |                  | 1                     | Concentration         |                |                       | Concentration         |                |
|                                         |                             |                         | % v/v                   |                  |                       | % v/v                 |                |                       | % v/v                 |                |
| Carbon dioxide                          |                             |                         | 18.7                    |                  |                       | 16.3                  |                |                       | 19.8                  |                |
| Oxygen                                  |                             |                         | 9.9                     |                  |                       | 9.3                   |                |                       | 10.9                  |                |
|                                         |                             |                         |                         |                  |                       |                       |                |                       |                       |                |
| Dioxins & Furans (PCDD                  | s & PCDFs)                  |                         | Average                 |                  |                       | Test 1                |                |                       | Test 2                |                |
|                                         | Sampling time               |                         |                         |                  |                       | 1055 - 1258           |                |                       | 1055 - 1257           |                |
|                                         |                             |                         | Corrected to            |                  |                       | Corrected to          |                |                       | Corrected to          |                |
|                                         |                             | Concentration           | 10% 02                  | Mass Rate        | Concentration         | 10% O2                | Mass Rate      | Concentration         | 10% O2                | Mass Rate      |
|                                         |                             | ng/m³                   | ng/m³                   | ng/min           | ng/m³                 | ng/m³                 | ng/min         | ng/m³                 | ng/m³                 | ng/min         |
| 2,3,7,8-TCDF                            |                             | 0.0014                  | 0.0014                  | 9.1              | 0.0013                | 0.0012                | 8.2            | 0.0016                | 0.0015                | 10             |
| 2,3,7,8-TCDD                            |                             | <0.001                  | < 0.001                 | <7               | <0.001                | < 0.001               | <7             | <0.001                | < 0.001               | <6             |
| 1,2,3,7,8-PeCDF                         |                             | ≤0.00016                | ≤0.00016                | ≤1               | < 0.0001              | <0.0001               | <0.9           | 0.00017               | 0.00017               | 1.1            |
| 2,3,4,7,8-PeCDF                         |                             | <0.001                  | <0.001                  | <7               | < 0.0009              | <0.0008               | <6             | < 0.001               | <0.001                | <8             |
| 1,2,3,7,8-PeCDD                         |                             | <0.0007                 | <0.0007                 | <4               | < 0.0009              | <0.0008               | <6             | <0.0005               | < 0.0005              | <3             |
| 1,2,3,4,7,8-HxCDF                       |                             | <0.0008                 | <0.0008                 | <0.5             | < 0.0001              | <0.0001               | <0.7           | <0.00005              | <0.00005              | <0.3           |
| 1,2,3,6,7,8-HxCDF                       |                             | ≤0.000097               | ≤0.000096               | ≤0.63            | < 0.0001              | <0.0001               | <0.7           | 0.000081              | 0.00008               | 0.52           |
| 2,3,4,6,7,8-HxCDF                       |                             | <0.00005                | < 0.00005               | <0.3             | <0.00006              | <0.00006              | <0.4           | <0.00005              | < 0.00005             | <0.3           |
| 1,2,3,7,8,9-HxCDF                       |                             | < 0.0001                | <0.0001                 | <0.7             | <0.0001               | < 0.0001              | <0.7           | < 0.0001              | <0.0001               | <0.6           |
| 1,2,3,4,7,8-HxCDD                       |                             | < 0.0001                | <0.0001                 | <0.9             | < 0.0002              | < 0.0002              | <1             | <0.0001               | < 0.0001              | <0.6           |
| 1,2,3,6,7,8-HxCDD                       |                             | < 0.0001                | <0.0001                 | <0.7             | < 0.0001              | < 0.0001              | <0.7           | <0.0001               | < 0.0001              | <0.6           |
| 1,2,3,7,8,9-HxCDD                       |                             | < 0.0001                | <0.0001                 | <0.9             | <0.0002               | < 0.0002              | <1             | <0.0001               | <0.0001               | <0.6           |
| 1,2,3,4,6,7,8-HpCDF                     |                             | ≤0.000016<br>±0.00001   | ≤0.000016<br>±0.00001   | ≤0.11            | <0.00002              | < 0.00002             | <0.1           | 0.000016              | 0.000015              | 0.1            |
| 1,2,3,4,7,8,9-HpCDF                     |                             | <0.00001                | <0.00001                | <0.07            | <0.00001              | <0.00001              | <0.07          | < 0.00001             | < 0.00001             | <0.06          |
| 1,2,3,4,6,7,8-HpCDD<br>OCDF             |                             | ≤0.000026<br>≤0.0000013 | ≤0.000025<br>≤0.0000013 | ≤0.17<br>≤0.0084 | <0.00002<br><0.000001 | <0.00002<br><0.000001 | <0.1<br><0.007 | 0.000034<br>0.0000015 | 0.000034<br>0.0000014 | 0.22<br>0.0094 |
| OCDF                                    |                             | ≤0.0000013<br>0.00001   | ≤0.0000013<br>0.00001   | ≤0.0084<br>0.067 | <0.000001 0.0000092   | <0.000001             | <0.007         | 0.000015              | 0.0000014             | 0.0094         |
| Total TCDF isomers                      |                             | 1.7                     | 1.7                     | 11000            | 1.6                   | 1.6                   | 11000          | 1.8                   | 1.8                   | 12000          |
| Total TCDD isomers                      |                             | 0.0031                  | 0.0031                  | 20               | 0.0033                | 0.0032                | 21             | 0.003                 | 0.0029                | 12000          |
| Total PeCDF isomers                     |                             | 0.059                   | 0.0051                  | 380              | 0.0053                | 0.053                 | 350            | 0.065                 | 0.065                 | 420            |
| Total PeCDD isomers                     |                             | <0.008                  | <0.008                  | <50              | <0.01                 | <0.01                 | <70            | < 0.005               | <0.005                | <30            |
| Total HxCDF isomers                     |                             | 0.0043                  | 0.0043                  | 28               | 0.0021                | 0.002                 | 13             | 0.0065                | 0.0065                | 42             |
| Total HxCDD isomers                     |                             | 0.0082                  | 0.0082                  | 53               | 0.0074                | 0.0074                | 48             | 0.0091                | 0.009                 | 58             |
| Total HpCDF isomers                     |                             | ≤0.0023                 | ≤0.0023                 | ≤15              | <0.003                | <0.003                | <20            | 0.0018                | 0.0018                | 12             |
| Total HpCDD isomers                     |                             | 0.0048                  | 0.0047                  | 31               | 0.0025                | 0.0025                | 16             | 0.007                 | 0.007                 | 45             |
|                                         |                             |                         |                         |                  |                       |                       | -              |                       |                       | -              |
| Total PCDDs + PCDFs                     |                             | 1.8                     | 1.8                     | 12000            | 1.7                   | 1.7                   | 11000          | 2                     | 1.9                   | 13000          |
| I-TEQ                                   |                             |                         |                         |                  |                       |                       |                |                       |                       |                |
| Lower Bound                             |                             | 0.0016                  | 0.0016                  | 10               | 0.0013                | 0.0013                | 8.3            | 0.0019                | 0.0019                | 12             |
| Middle Bound                            |                             | 0.0010                  | 0.0033                  | 22               | 0.0013                | 0.0032                | 21             | 0.0035                | 0.0035                | 23             |
| Upper Bound                             |                             | 0.0052                  | 0.0051                  | 33               | 0.0052                | 0.0051                | 34             | 0.0052                | 0.0051                | 33             |
| • • •                                   |                             |                         |                         | -                |                       |                       |                |                       |                       | -              |

#### Abbreviations and definitions

I-TEQ

Lower Bound Middle Bound Upper Bound

#### International toxic equivalents for dioxins and furans

Defines values reported below detection as equal to zero. Defines values reported below detection are equal to half the detection limit.

Defines values reported below detection are equal to the detection limit.

TEQs are calculated by multiplying the quantified result for each toxic compound by its corresponding toxic equivalency factor.

| Isokinetic Sampling Parameters | Test 1 | Test 2 |
|--------------------------------|--------|--------|
| PAHs, Dioxins & Furans         |        |        |
| Sampling time, min             | 120    | 120    |
| Isokinetic rate, %             | 98%    | 98%    |

#### Prepared for: Boral Cement Ltd (Berrima) Report No.: R016899-1[DRAFT] Date: 17/06/2024 Page: 7 of 16

| Date                                            | 30/04/2024                   |                   |               |             | Client        | Boral Cemer       | at I t d   |                   |                   |           |
|-------------------------------------------------|------------------------------|-------------------|---------------|-------------|---------------|-------------------|------------|-------------------|-------------------|-----------|
| Report                                          | R016899                      |                   |               |             | Stack ID      | EPA 2: No.6       |            |                   |                   |           |
| Licence No.                                     | 1698                         |                   |               |             | Location      | New Berrim        |            |                   |                   |           |
| Ektimo Staff                                    | Mohamed Trabelsi/ Sc         | ott Woods         |               |             | State         | NSW               | a          |                   |                   |           |
| Process Conditions                              | Please refer to client n     |                   |               |             | State         | INDIV             |            |                   |                   | 240424    |
|                                                 |                              | 001001            |               |             |               |                   |            |                   |                   | 210121    |
| Stack Parameters                                |                              |                   |               |             |               |                   |            |                   |                   |           |
| Moisture content, %v/v                          |                              |                   |               | 15          |               |                   |            |                   |                   |           |
| Gas molecular weight, g/ୁ                       | g mole                       |                   |               | 29.5 (wet)  |               |                   | 31.4 (dry) |                   |                   |           |
| Gas density at STP, kg/m <sup>3</sup>           |                              |                   |               | 1.32 (wet)  |               |                   | 1.40 (dry) |                   |                   |           |
| Gas density at discharge c                      | onditions, kg/m <sup>3</sup> |                   |               | 0.86        |               |                   |            |                   |                   |           |
| % Oxygen correction & Fa                        | ctor                         |                   |               | 10 %        |               |                   | 1.01       |                   |                   |           |
| Gas Flow Parameters                             |                              |                   |               |             |               |                   |            |                   |                   |           |
| Flow measurement time(                          | s) (hhmm)                    |                   |               | 1215 & 1350 |               |                   |            |                   |                   |           |
| Temperature, °C                                 | -, (,                        |                   |               | 112         |               |                   |            |                   |                   |           |
| Temperature, K                                  |                              |                   |               | 385         |               |                   |            |                   |                   |           |
| Velocity at sampling plan                       | e m/s                        |                   |               | 28          |               |                   |            |                   |                   |           |
| Volumetric flow rate, actu                      |                              |                   |               | 200         |               |                   |            |                   |                   |           |
| Volumetric flow rate (wet                       |                              |                   |               | 130         |               |                   |            |                   |                   |           |
| Volumetric flow rate (dry                       |                              |                   |               | 110         |               |                   |            |                   |                   |           |
| Mass flow rate (wet basis                       |                              |                   |               | 620000      |               |                   |            |                   |                   |           |
|                                                 |                              |                   |               |             |               |                   |            |                   |                   |           |
| Gas Analyser Results                            |                              |                   | Average       |             |               | Minimum           |            | 1                 | Maximum           |           |
|                                                 | Sampling time                |                   | 1245 - 1343   |             |               | 1245 - 1343       |            | :                 | L245 - 1343       |           |
|                                                 |                              |                   | Concentration |             | 0             | Concentration     |            | C                 | oncentration      |           |
|                                                 |                              |                   | % v/v         |             |               | % v/v             |            |                   | % v/v             |           |
| Carbon dioxide                                  |                              |                   | 18.2          |             |               | 15.1              |            |                   | 18.9              |           |
| Oxygen                                          |                              |                   | 10.1          |             |               | 9.4               |            |                   | 12                |           |
|                                                 |                              |                   |               |             | 1             |                   |            |                   |                   |           |
| Isokinetic Results                              |                              |                   | Average       |             |               | Test 1            |            |                   | Test 2            |           |
|                                                 | Sampling time                |                   |               |             |               | 1242-1344         |            |                   | 1242-1344         |           |
|                                                 |                              |                   | Corrected to  |             |               | Corrected to      |            |                   | Corrected to      |           |
|                                                 |                              | Concentration     | 10% 02        | Mass Rate   | Concentration | 10% 02            | Mass Rate  | Concentration     | 10% 02            | Mass Rate |
| l                                               |                              | mg/m <sup>3</sup> | mg/m³         | g/min       | mg/m³         | mg/m <sup>3</sup> | g/min      | mg/m <sup>3</sup> | mg/m³             | g/min     |
| Antimony                                        |                              | < 0.007           | < 0.007       | <0.05       | < 0.007       | <0.007            | <0.05      | < 0.007           | <0.007            | <0.04     |
| Arsenic                                         |                              | <0.004            | < 0.004       | <0.03       | < 0.004       | <0.004            | <0.03      | < 0.004           | < 0.004           | <0.03     |
| Barium                                          |                              | < 0.003           | < 0.003       | <0.02       | < 0.003       | < 0.003           | <0.02      | < 0.003           | < 0.003           | <0.02     |
| Beryllium                                       |                              | <0.001            | <0.001        | <0.01       | <0.002        | <0.002            | <0.01      | <0.001            | <0.001            | < 0.009   |
| Cadmium                                         |                              | <0.0007           | <0.0007       | <0.005      | <0.0008       | <0.0008           | <0.006     | <0.0007           | <0.0007           | < 0.004   |
| Chromium                                        |                              | < 0.003           | < 0.003       | <0.02       | < 0.003       | < 0.003           | <0.02      | < 0.003           | <0.003            | <0.02     |
| Cobalt                                          |                              | <0.002            | <0.002        | <0.02       | < 0.003       | < 0.003           | <0.02      | < 0.002           | <0.002            | < 0.02    |
| Lead                                            |                              | <0.003            | <0.003        | <0.02       | < 0.003       | < 0.003           | <0.02      | < 0.003           | < 0.003           | <0.02     |
| Manganese                                       |                              | ≤0.014            | ≤0.014        | ≤0.092      | <0.01         | <0.01             | <0.1       | 0.013             | 0.013             | 0.087     |
| Mercury                                         |                              | <0.02             | <0.02         | <0.2        | <0.02         | <0.02             | <0.2       | <0.02             | <0.02             | <0.2      |
| Nickel                                          |                              | <0.003            | <0.003        | <0.02       | < 0.003       | < 0.003           | <0.02      | < 0.003           | < 0.003           | <0.02     |
| Selenium                                        |                              | <0.007            | <0.007        | <0.05       | <0.007        | <0.007            | <0.05      | <0.007            | <0.007            | <0.04     |
| Thallium                                        |                              | <0.004            | <0.004        | <0.03       | <0.004        | < 0.004           | <0.03      | <0.004            | < 0.004           | <0.03     |
| Tin                                             |                              | <0.004            | <0.004        | <0.03       | <0.004        | < 0.004           | <0.03      | <0.004            | < 0.004           | <0.03     |
| Vanadium                                        |                              | <0.003            | <0.003        | <0.02       | <0.003        | < 0.003           | <0.02      | <0.003            | <0.003            | <0.02     |
| Type 1 & 2 Substances                           |                              |                   |               |             |               |                   |            |                   |                   |           |
| Upper Bound                                     |                              |                   |               |             |               |                   |            |                   |                   |           |
| Total Type 1 Substances                         |                              | <0.04             | < 0.04        | <0.3        | < 0.04        | <0.04             | <0.3       | <0.04             | <0.04             | <0.2      |
| Total Type 2 Substances                         |                              | <0.04             | <0.04         | <0.2        | <0.04         | <0.04             | <0.3       | ≤0.036            | ≤0.036            | ≤0.24     |
| Total Type 1 & 2 Substance                      | es                           | <0.08             | <0.04         | <0.5        | <0.04         | <0.04             | <0.5       | ≤0.072            | ≤0.073            | ≤0.48     |
|                                                 |                              |                   |               |             |               |                   |            |                   |                   |           |
| Isokinetic Sampling Paran                       | neters                       |                   |               |             |               |                   |            |                   |                   |           |
| Sampling time, min                              |                              |                   |               |             |               | 60                |            |                   | 60                |           |
|                                                 |                              |                   |               |             |               |                   |            |                   |                   |           |
| lsokinetic rate, %<br>Gravimetric analysis date |                              |                   |               |             |               | 100               |            |                   | 100<br>)5-06-2024 |           |

#### Prepared for: Boral Cement Ltd (Berrima) Report No.: R016899-1[DRAFT] Date: 17/06/2024 Page: 8 of 16

| Date                      | 1/05/2024                     |                                    |                                             |                    | Client                          | Boral Cemer                                 |                    |                                    |                                             |                    |
|---------------------------|-------------------------------|------------------------------------|---------------------------------------------|--------------------|---------------------------------|---------------------------------------------|--------------------|------------------------------------|---------------------------------------------|--------------------|
| Report                    | R016899                       |                                    |                                             |                    | Stack ID                        | EPA 2: No.61                                |                    |                                    |                                             |                    |
| Licence No.               | 1698                          |                                    |                                             |                    | Location                        | New Berrim                                  | а                  |                                    |                                             |                    |
| Ektimo Staff              | Adnan Latif / James Cu        |                                    |                                             |                    | State                           | NSW                                         |                    |                                    |                                             |                    |
| Process Conditions        | Please refer to client r      | ecords.                            |                                             |                    |                                 |                                             |                    |                                    |                                             | 240424             |
| Stack Parameters          |                               |                                    |                                             |                    |                                 |                                             |                    |                                    |                                             |                    |
| Moisture content, %v/v    |                               |                                    |                                             | 15                 |                                 |                                             |                    |                                    |                                             |                    |
| Gas molecular weight, g/  | /g mole                       |                                    |                                             | 29.4 (wet)         |                                 |                                             | 31.4 (dry)         |                                    |                                             |                    |
| Gas density at STP, kg/m  | 3                             |                                    |                                             | 1.31 (wet)         |                                 |                                             | 1.40 (dry)         |                                    |                                             |                    |
| Gas density at discharge  | conditions, kg/m <sup>3</sup> |                                    |                                             | 0.83               |                                 |                                             |                    |                                    |                                             |                    |
| % Oxygen correction & F   | actor                         |                                    |                                             | 10 %               |                                 |                                             | 1.03               |                                    |                                             |                    |
| Gas Flow Parameters       |                               |                                    |                                             |                    |                                 |                                             |                    |                                    |                                             |                    |
| Flow measurement time     | (s) (hhmm)                    |                                    |                                             | 1334 & 1458        |                                 |                                             |                    |                                    |                                             |                    |
| Temperature, °C           |                               |                                    |                                             | 125                |                                 |                                             |                    |                                    |                                             |                    |
| Temperature, K            |                               |                                    |                                             | 398                |                                 |                                             |                    |                                    |                                             |                    |
| Velocity at sampling plan | ne, m/s                       |                                    |                                             | 29                 |                                 |                                             |                    |                                    |                                             |                    |
| Volumetric flow rate, act | tual, m³/s                    |                                    |                                             | 200                |                                 |                                             |                    |                                    |                                             |                    |
| Volumetric flow rate (we  | et STP), m³/s                 |                                    |                                             | 130                |                                 |                                             |                    |                                    |                                             |                    |
| Volumetric flow rate (dr  | y STP), m³/s                  |                                    |                                             | 110                |                                 |                                             |                    |                                    |                                             |                    |
| Mass flow rate (wet basi  | s), kg/h                      |                                    |                                             | 610000             |                                 |                                             |                    |                                    |                                             |                    |
| Gas Analyser Results      |                               |                                    | Average                                     |                    |                                 | Minimum                                     |                    |                                    | Maximum                                     |                    |
|                           | Sampling time                 |                                    | 1345 - 1447                                 |                    |                                 | 1345 - 1447                                 |                    |                                    | 1345 - 1447                                 |                    |
|                           |                               |                                    | Concentration                               |                    |                                 | Concentration                               |                    |                                    | Concentration                               |                    |
|                           |                               |                                    | % v/v                                       |                    |                                 | % v/v                                       |                    |                                    | % v/v                                       |                    |
| Carbon dioxide            |                               |                                    | 17.8                                        |                    |                                 | 17.4                                        |                    |                                    | 18.3                                        |                    |
| Oxygen                    |                               |                                    | 10.3                                        |                    |                                 | 9.8                                         |                    |                                    | 10.7                                        |                    |
| Halides & Halogens e      | .g HCl, Cl2, HF               |                                    | Average                                     |                    |                                 | Test 1                                      |                    |                                    | Test 2                                      |                    |
|                           | Sampling time                 |                                    |                                             |                    |                                 | 1345-1445                                   |                    |                                    | 1345-1445                                   |                    |
|                           |                               |                                    | Corrected to                                |                    |                                 | Corrected to                                |                    |                                    | Corrected to                                |                    |
|                           |                               | Concentration                      | 10% O2                                      | Mass Rate          | Concentration                   | 10% 02                                      | Mass Rate          | Concentration                      | 10% 02                                      | Mass Rate          |
|                           |                               | mg/m³                              | mg/m³                                       | g/min              | mg/m³                           | mg/m³                                       | g/min              | mg/m³                              | mg/m³                                       | g/min              |
| Chloride (as HCl)         |                               | 0.93                               | 0.96                                        | 6.2                | 1.5                             | 1.5                                         | 9.8                | 0.38                               | 0.39                                        | 2.5                |
| Chlorine                  |                               | 0.47                               | 0.49                                        | 3.1                | 0.57                            | 0.59                                        | 3.8                | 0.38                               | 0.39                                        | 2.5                |
| Isokinetic Results        |                               |                                    | Average                                     |                    |                                 | Test 1                                      |                    |                                    | Test 2                                      |                    |
|                           | Sampling time                 |                                    | 5                                           |                    |                                 | 1345-1447                                   |                    |                                    | 1345-1447                                   |                    |
|                           |                               | Concentration<br>mg/m <sup>3</sup> | Corrected to<br>10% O2<br>mg/m <sup>3</sup> | Mass Rate<br>g/min | Concentration mg/m <sup>3</sup> | Corrected to<br>10% O2<br>mg/m <sup>3</sup> | Mass Rate<br>g/min | Concentration<br>mg/m <sup>3</sup> | Corrected to<br>10% O2<br>mg/m <sup>3</sup> | Mass Rate<br>g/min |
| Total fluoride (as HF)    |                               | <0.04                              | <0.04                                       | <0.3               | <0.04                           | <0.04                                       | <0.3               | <0.04                              | <0.04                                       | <0.2               |
| Isokinetic Sampling Para  | meters                        |                                    |                                             |                    |                                 |                                             |                    |                                    |                                             |                    |
| Sampling time, min        | meters                        |                                    |                                             |                    |                                 | 60                                          |                    |                                    | 60                                          |                    |
|                           |                               |                                    |                                             |                    |                                 | 101                                         |                    |                                    | 100                                         |                    |
| Isokinetic rate, %        |                               |                                    |                                             |                    | I                               | 101                                         |                    |                                    | 100                                         |                    |

| Date<br>Report<br>Licence No.         | 1/05/2024                    |               |               |             | Client        | Boral Cemer   |            |               |              |           |
|---------------------------------------|------------------------------|---------------|---------------|-------------|---------------|---------------|------------|---------------|--------------|-----------|
|                                       |                              |               |               |             |               |               |            |               |              |           |
| Licence No.                           | R016899                      |               |               |             | Stack ID      | EPA 2: No.61  |            |               |              |           |
|                                       | 1698                         |               |               |             | Location      | New Berrima   | a          |               |              |           |
| Ektimo Staff                          | Adnan Latif / James Cu       |               |               |             | State         | NSW           |            |               |              |           |
| Process Conditions                    | Please refer to client r     | ecords.       |               |             |               |               |            |               |              | 240424    |
| Stack Parameters                      |                              |               |               |             |               |               |            |               |              |           |
| Moisture content, %v/v                |                              |               |               | 16          |               |               |            |               |              |           |
| Gas molecular weight, g/g             | g mole                       |               |               | 29.5 (wet)  |               |               | 31.6 (dry) |               |              |           |
| Gas density at STP, kg/m <sup>3</sup> |                              |               |               | 1.32 (wet)  |               |               | 1.41 (dry) |               |              |           |
| Gas density at discharge o            | onditions, kg/m <sup>3</sup> |               |               | 0.83        |               |               |            |               |              |           |
| % Oxygen correction & Fa              | ctor                         |               |               | 10 %        |               |               | 0.92       |               |              |           |
| Gas Flow Parameters                   |                              |               |               |             |               |               |            |               |              |           |
| Flow measurement time(s               | s) (hhmm)                    |               |               | 0915 & 1044 |               |               |            |               |              |           |
| Temperature, °C                       |                              |               |               | 128         |               |               |            |               |              |           |
| Temperature, K                        |                              |               |               | 401         |               |               |            |               |              |           |
| Velocity at sampling plane            | e, m/s                       |               |               | 28          |               |               |            |               |              |           |
| Volumetric flow rate, actu            | ual, m³/s                    |               |               | 200         |               |               |            |               |              |           |
| Volumetric flow rate (wet             | ι STP), m³/s                 |               |               | 120         |               |               |            |               |              |           |
| Volumetric flow rate (dry             | STP), m³/s                   |               |               | 100         |               |               |            |               |              |           |
| Mass flow rate (wet basis)            | ), kg/h                      |               |               | 590000      |               |               |            |               |              |           |
| Gas Analyser Results                  |                              |               | Average       |             |               | Minimum       |            | Ν             | /laximum     |           |
|                                       | Sampling time                |               | 0926 - 1026   |             |               | 0926 - 1026   |            | C             | 926 - 1026   |           |
|                                       |                              |               | Corrected to  |             |               | Corrected to  |            |               | Corrected to |           |
|                                       |                              | Concentration | 10% O2        | Mass Rate   | Concentration | 10% 02        | Mass Rate  | Concentration | 10% 02       | Mass Rate |
| Combustion Gases                      |                              | mg/m³         | mg/m³         | g/min       | mg/m³         | mg/m³         | g/min      | mg/m³         | mg/m³        | g/min     |
| Nitrogen oxides (as NO <sub>2</sub> ) |                              | 810           | 750           | 5100        | 740           | 680           | 4600       | 910           | 840          | 5700      |
| Carbon monoxide                       |                              | 380           | 350           | 2400        | 340           | 320           | 2200       | 450           | 420          | 2800      |
|                                       |                              |               | Concentration |             |               | Concentration |            | Co            | oncentration |           |
|                                       |                              |               | % v/v         |             |               | % v/v         |            |               | % v/v        |           |
| Carbon dioxide                        |                              |               | 19.7          |             |               | 18.9          |            |               | 20.5         |           |
| Oxygen                                |                              |               | 9.1           |             |               | 8.6           |            |               | 9.9          |           |
| Isokinetic Results                    |                              |               | Average       |             |               | Test 1        |            |               | Test 2       |           |
|                                       | Sampling time                |               | -             |             |               | 0926-1028     |            |               | 0926-1028    |           |
|                                       | -                            |               | Corrected to  |             |               | Corrected to  |            |               | Corrected to |           |
|                                       |                              | Concentration | 10% 02        | Mass Rate   | Concentration | 10% 02        | Mass Rate  | Concentration | 10% 02       | Mass Rate |
|                                       |                              | mg/m³         | mg/m³         | g/min       | mg/m³         | mg/m³         | g/min      | mg/m³         | mg/m³        | g/min     |
| Hexavalent chromium                   |                              | ≤0.024        | ≤0.022        | ≤0.15       | 0.044         | 0.041         | 0.28       | <0.003        | < 0.003      | <0.02     |
| Isokinetic Sampling Param             | neters                       |               |               |             |               |               |            |               |              |           |
| Sampling time, min                    |                              |               |               |             |               | 60            |            |               | 60           |           |
| Damping time, time                    |                              | 1             |               |             | 1             | 102           |            |               | 101          |           |

| Date<br>Report<br>Licence No.                        | 30/04/2024<br>R016899<br>1698            |                                    |                                |                    | Client<br>Stack ID<br>Location     | Boral Ceme<br>EPA 2: No.6<br>New Berrin | Kiln Stack         |                                    |                     |                    |
|------------------------------------------------------|------------------------------------------|------------------------------------|--------------------------------|--------------------|------------------------------------|-----------------------------------------|--------------------|------------------------------------|---------------------|--------------------|
| Ektimo Staff<br>Process Conditions                   | Mohamed Trabelsi<br>Please refer to clie |                                    | / James Cull                   | len                | State                              | NSW                                     |                    |                                    |                     | 240424             |
| Stack Parameters                                     |                                          |                                    |                                |                    |                                    |                                         |                    |                                    |                     |                    |
| Moisture content, %v/v                               |                                          |                                    |                                | 14                 |                                    |                                         |                    |                                    |                     |                    |
| Gas molecular weight, g                              | g/g mole                                 |                                    |                                | 29.5 (wet)         |                                    |                                         | 31.4 (dry)         |                                    |                     |                    |
| Gas density at STP, kg/n                             | n³                                       |                                    |                                | 1.32 (wet)         |                                    |                                         | 1.40 (dry)         |                                    |                     |                    |
| Gas density at discharg                              |                                          |                                    |                                | 0.87               |                                    |                                         |                    |                                    |                     |                    |
| % Oxygen correction & F                              | actor                                    |                                    |                                | 10 %               |                                    |                                         | 1.03               |                                    |                     |                    |
| Gas Flow Parameters                                  |                                          |                                    |                                |                    |                                    |                                         |                    |                                    |                     |                    |
| Flow measurement time                                | e(s) (hhmm)                              |                                    | 09                             | 15, 1035 & 12      | 15                                 |                                         |                    |                                    |                     |                    |
| Temperature, °C                                      |                                          |                                    |                                | 111                |                                    |                                         |                    |                                    |                     |                    |
| Temperature, K                                       | ana m/s                                  |                                    |                                | 384<br>28          |                                    |                                         |                    |                                    |                     |                    |
| Velocity at sampling pla<br>Volumetric flow rate, ac |                                          |                                    |                                | 20                 |                                    |                                         |                    |                                    |                     |                    |
| Volumetric flow rate (w                              |                                          |                                    |                                | 130                |                                    |                                         |                    |                                    |                     |                    |
| Volumetric flow rate (dr                             |                                          |                                    |                                | 110                |                                    |                                         |                    |                                    |                     |                    |
| Mass flow rate (wet bas                              |                                          |                                    |                                | 620000             |                                    |                                         |                    |                                    |                     |                    |
| Gas Analyser Results                                 |                                          |                                    | Average                        |                    |                                    | Minimum                                 |                    | 1                                  | Maximum             |                    |
|                                                      | Samplingtime                             |                                    | 0926 - 1202                    |                    |                                    | 0926 - 1202                             |                    |                                    | 926 - 1202          |                    |
|                                                      |                                          | C                                  | Concentration                  | ı                  | с                                  | oncentration                            |                    | Co                                 | oncentration        |                    |
|                                                      |                                          |                                    | % v/v                          |                    |                                    | % v/v                                   |                    |                                    | % v/v               |                    |
| Carbon dioxide                                       |                                          |                                    | 18                             |                    |                                    | 17.3                                    |                    |                                    | 18.5                |                    |
| Oxygen                                               |                                          |                                    | 10.3                           |                    |                                    | 9.9                                     |                    |                                    | 10.8                |                    |
| Isokinetic Results                                   |                                          |                                    | Average                        |                    |                                    | Test 1                                  |                    |                                    | Test 2              |                    |
|                                                      | Samplingtime                             |                                    |                                |                    |                                    | 0922-1024                               |                    | :                                  | 1101-1203           |                    |
|                                                      |                                          |                                    | Corrected                      |                    |                                    | Corrected                               |                    |                                    | Corrected           |                    |
|                                                      |                                          | Concentration<br>mg/m <sup>3</sup> | to 10% O2<br>mg/m <sup>3</sup> | Mass Rate<br>g/min | Concentration<br>mg/m <sup>3</sup> | to 10% O2<br>mg/m <sup>3</sup>          | Mass Rate<br>g/min | Concentration<br>mg/m <sup>3</sup> | to 10% O2<br>mg/m³  | Mass Rate<br>g/min |
| Solid Particles                                      |                                          | 29                                 | 30                             | 200                | 25                                 | 26                                      | 170                | 33                                 | 34                  | 230                |
| Sulfur dioxide                                       |                                          | ≤0.03                              | ≤0.031                         | ≤0.2               | <0.02                              | <0.03                                   | <0.2               | 0.035                              | 0.036               | 0.24               |
| Sulfur trioxide and/or S                             | ulfuric acid (as SO3)                    | 0.062                              | 0.064                          | 0.42               | 0.081                              | 0.083                                   | 0.53               | 0.044                              | 0.045               | 0.3                |
| Isokinetic Sampling Paran                            | neters                                   |                                    |                                |                    | Isokinetic                         |                                         |                    | Isokinetic                         |                     |                    |
| Sampling time, min                                   |                                          |                                    |                                |                    | 60                                 |                                         |                    | 60                                 |                     |                    |
| Isokinetic rate, %                                   |                                          |                                    |                                |                    | 100                                |                                         |                    | 104                                |                     |                    |
| Gravimetric analysis da                              | te (total particulate)                   |                                    |                                |                    |                                    | 05-06-2024                              |                    | 0                                  | 5-06-2024           |                    |
| Total VOCs (as n-Propar                              | ne)                                      |                                    | Average                        |                    |                                    | Test 1                                  |                    |                                    | Test 2              |                    |
|                                                      |                                          |                                    | Corrected                      |                    |                                    | Corrected                               |                    |                                    | Corrected           |                    |
|                                                      |                                          | Concentration                      | to 10% O2                      | Mass Rate          | Concentration                      |                                         | Mass Rate          | Concentration                      |                     | Mass Rate          |
| Total                                                |                                          | 1 Q                                | mg/m³                          | g/min              | mg/m <sup>3</sup>                  | mg/m³                                   | g/min              | 1 Q                                | mg/m <sup>3</sup>   | g/min              |
| Total                                                |                                          | 1.9                                | 1.9                            | 13                 | 1.9                                | 1.9                                     | 13                 | 1.9                                | 1.9                 | 13                 |
| VOC (speciated)                                      | Samplingtime                             |                                    | Average                        |                    |                                    | Test 1<br>0944-1044                     |                    |                                    | Test 2<br>0944-1044 |                    |
|                                                      |                                          |                                    | Corrected                      |                    |                                    | Corrected                               |                    |                                    | Corrected           |                    |
|                                                      |                                          | Concentration<br>mg/m <sup>3</sup> |                                | Mass Rate<br>g/min | Concentration<br>mg/m <sup>3</sup> |                                         | Mass Rate<br>g/min | Concentration<br>mg/m <sup>3</sup> |                     | Mass Rate<br>g/min |
| Detection limit <sup>(1)</sup>                       |                                          | <0.08                              | <0.08                          | <0.5               | <0.07                              | <0.07                                   | <0.5               | <0.09                              | <0.09               | <0.6               |
| Acrylonitrile                                        |                                          | 0.16                               | 0.16                           | 1.1                | 0.15                               | 0.16                                    | 1                  | 0.16                               | 0.17                | 1.1                |
| Benzene                                              |                                          | 1.7                                | 1.7                            | 11                 | 1.6                                | 1.7                                     | 11                 | 1.7                                | 1.8                 | 12                 |
| Methylcyclohexane                                    |                                          | 0.12                               | 0.12                           | 0.77               | 0.11                               | 0.11                                    | 0.74               | 0.12                               | 0.12                | 0.81               |
| Toluene                                              |                                          | 0.25                               | 0.26                           | 1.7                | 0.24                               | 0.25                                    | 1.6                | 0.26                               | 0.27                | 1.7                |
| Octane                                               |                                          | 0.12                               | 0.13                           | 0.84               | 0.14                               | 0.14                                    | 0.92               | 0.11                               | 0.12                | 0.75               |
| m + p-Xylene                                         |                                          | 0.084                              | 0.087                          | 0.57               | 0.082                              | 0.085                                   | 0.55               | 0.086                              | 0.089               | 0.58               |
| Residuals as Toluene                                 |                                          | 1.1                                | 1.1                            | 7.4                | 1.2                                | 1.2                                     | 7.8                | 1                                  | 1.1                 |                    |

(1) Unless otherwise reported, the following target compounds were found to be below detection: Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1 Trichloroethylane, 1,2-Dichloroethane, Cyclohexane, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Tetrachloroethane, Butyl acetate, Chlorobenzene, Ethylbenzene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane

#### 3 Sample Plane Compliance

#### 3.1 EPA ID 2 – No. 6 Kiln Stack

| Sampling Plane Details                   |                                  |
|------------------------------------------|----------------------------------|
| Source tested                            | Kiln                             |
| Pollution control equipment              | Electrostatic precipitator - dry |
| Sampling plane dimensions                | 3000 mm                          |
| Sampling plane area                      | 7.07 m²                          |
| Sampling port size, number               | 6" Flange (x2)                   |
| Duct orientation & shape                 | Vertical Circular                |
| Downstream disturbance                   | Exit 8 D                         |
| Upstream disturbance                     | Junction 8 D                     |
| No. traverses & points sampled           | 2 12                             |
| Sample plane conformance to USEPA Method | Conforming                       |

The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

#### 4 Plant Operating Conditions

See Boral Cement Ltd (Berrima) records for complete process conditions.

Based on information received from Boral Cement Ltd personnel, it is our understanding that samples were collected during typical plant operations.

#### 5 Test Methods

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

| Parameter                                                    | Sampling method                                                      | Analysis method                                     | Uncertainty*  | NATA ac<br>Sampling | credited<br>Analysis          |
|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|---------------|---------------------|-------------------------------|
| Sampling points - Selection                                  | NSW EPA TM-1<br>(USEPA Method 1)                                     | NA                                                  | NA            | √                   | NA                            |
| Flow rate, temperature & velocity                            | NSW EPA TM-2<br>(USEPA Method 2)                                     | NSW EPA TM-2<br>(USEPA Method 2)                    | 8%, 2%, 7%    | NA                  | $\checkmark$                  |
| Moisture content                                             | NSW EPA TM-22<br>(USEPA Method 4)                                    | NSW EPA TM-22<br>(USEPA Method 4)                   | 8%            | ~                   | ✓                             |
| Molecular weight                                             | NA                                                                   | NSW EPA TM-23<br>(USEPA Method 3)                   | not specified | NA                  | ✓                             |
| Dry gas density                                              | NA                                                                   | NSW EPA TM-23<br>(USEPA Method 3)                   | not specified | NA                  | ✓                             |
| Carbon dioxide                                               | NSW EPA TM-24<br>(USEPA Method 3A)                                   | NSW EPA TM-24<br>(USEPA Method 3A)                  | 13%           | ~                   | ✓                             |
| Carbon monoxide                                              | NSW EPA TM-32<br>(USEPA Method 10)                                   | NSW EPA TM-32<br>(USEPA Method 10)                  | 12%           | ~                   | ✓                             |
| Nitrogen oxides                                              | NSW EPA TM-11<br>(USEPA Method 7E)                                   | NSW EPA TM-11<br>(USEPA Method 7E)                  | 12%           | ~                   | ✓                             |
| Oxygen                                                       | NSW EPA TM-25<br>(USEPA Method 3A)                                   | NSW EPA TM-25<br>(USEPA Method 3A)                  | 13%           | ~                   | ✓                             |
| Sulfur dioxide                                               | NSW EPA TM-4<br>(USEPA Method 8)                                     | Ektimo 235                                          | 16%           | ~                   | √ <sup>†k</sup>               |
| Speciated volatile organic compounds (VOCs)                  | NSW EPA TM-34 <sup>d</sup><br>(USEPA Method 18)                      | Ektimo 344                                          | 19%           | ~                   | $\checkmark^{\dagger}$        |
| Solid particles (total)                                      | NSW EPA TM-15<br>(AS 4323.2)                                         | NSW EPA TM-15<br>(AS 4323.2)                        | 3%            | ~                   | $\checkmark^{\dagger\dagger}$ |
| Total (gaseous & particulate) metals & metallic<br>compounds | NSW EPA TM-12, NSW<br>EPA TM-13, NSW EPA TM-<br>14 (USEPA Method 29) | Envirolab in-house methods<br>Metals-020/021/022    | 15%           | ✓                   | $\checkmark^{\ddagger}$       |
| Type 1 substances (As, Cd, Hg, Pb, Sb)                       | NSW EPA TM-12<br>(USEPA Method 29)                                   | Envirolab in-house methods<br>Metals-020/021/022    | 15%           | ~                   | $\checkmark^{\ddagger}$       |
| Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)            | NSW EPA TM-13<br>(USEPA Method 29)                                   | Envirolab in-house methods<br>Metals-020/021/022    | 15%           | ~                   | $\checkmark^{\ddagger}$       |
| Total & hexavalent chromium                                  | NSW EPA OM-4<br>(CARB 425)                                           | Envirolab in-house method<br>Metals-022 & Inorg-024 | 16%           | ~                   | $\checkmark^{\ddagger}$       |
| Dioxins & furans (PCDDs & PCDFs)                             | NSW EPA TM-18<br>(USEPA Method 23)                                   | NMI in-house method<br>AUTL_MET_02                  | 16%           | ~                   | √1                            |
| Fluorine & fluorine compounds <sup>1</sup>                   | NSW EPA TM-9<br>(USEPA Method 13B)                                   | Ektimo 235                                          | 25%           | ~                   | $\checkmark^{\dagger}$        |
| Hydrogen chloride                                            | NSW EPA TM-8<br>(USEPA Method 26)                                    | Ektimo 235                                          | 14%           | ✓                   | ✓ <sup>†i</sup>               |
| Chlorine                                                     | NSW EPA TM-7<br>(USEPA Method 26)                                    | Ektimo 235                                          | 14%           | ✓                   | $\checkmark^{\dagger i}$      |
| Sulfuric acid mist and/or sulfur trioxide                    | NSW EPA TM-3<br>(USEPA Method 8)                                     | Ektimo 235                                          | 16%           | $\checkmark$        | $\checkmark^{\dagger m}$      |

Please refer to the next page for Laboratory Analysis Footnotes.

\* Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

¶ Analysis performed by Australian Government National Measurement Institute, NATA accreditation number 198. Results were reported to Ektimo on 7 June 2024 in report RN1430789.

<sup>+</sup> Analysis performed by Ektimo. Results were reported to Ektimo on:

- 10 May 2024 in report LV-005740.
- 14 May 2024 in report LV-005755.
- 23 May 2024 in report LV-005786.
- 3 June 2024 in report LV-005863.
- 3 June 2024 in report LV-005865.

++ Gravimetric analysis conducted at the Ektimo NSW laboratory.

‡ Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 17 May 2024 in report 350913.

d Excludes recovery study as specified in section 8.4.3 of USEPA Test Method 18.

i Includes analysis of chlorine/chloride by Ektimo 235 which uses the same principle as USEPA Method 26/26A.

<sup>1</sup> Sampling follows USEPA Method 13B and analysis follows Ektimo 235 (ion chromatography which uses the same principle as the NSW EPA approved alternative analysis method USEPA SW-846 Method 9056A).

<sup>k</sup> Includes analysis of SO2 by Ektimo 235 which uses the same principle as USEPA SW-846 Method 9056A which is an approved alternative to the analytical procedure of USEPA Method 6/8.

<sup>m</sup> Includes analysis of  $SO_3/H_2SO_4$  by Ektimo 235 which uses the same principle as USEPA SW-846 Method 9056A which is an approved alternative to the analytical procedure of USEPA Method 8.

#### 6 Deviations to Test Methods

#### TM-34 VOLATILE ORGANIC COMPOUNDS

Ektimo notes that the sampling and analysis of Volatile Organic Compounds (VOCs), per USEPA Method 18 has excluded the recovery study as specified in Section 8.4.3. Performing the recovery study described in Section 8.4.3 of USEPA Method 18 for analytes present at low levels is problematic. Given this, Ektimo applies a threshold of 50µg as a lower-bound mass, below which the 'spiking' of specific volatile organic compounds is not performed. For the purposes of this round of monitoring, the following compounds were present above the detection limit (0.1 µg) but were below 50µg. Therefore, recovery studies for the following analytes were not performed:

#### Test 1

- Acrylonitrile (2.2 μg)
- Benzene (24 μg)
- Methylcyclohexane (1.6 μg)
- Toluene (3.5 μg)
- Octane (2 μg)
- m + p-Xylene (1.2 μg)

#### Test 2

- Acrylonitrile (1.9 μg)
- Benzene (20 μg)
- Methylcyclohexane (1.4 μg)
- Toluene (3 μg)
- Octane (1.3 μg)
- m + p-Xylene (1 μg)

#### NSW TM-12, 13 TYPE 1 & 2 SUBSTANCES

Thallium has been sampled and analysed according to USEPA Method 29. Although not listed analyte under the Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales (NSW EPA) (2022) TM-12 (Type 1 Substances) or TM-13 (Type 2 Substances) it is approved analyte listed within USEPA Method 29.

#### TM-9 FLUORINE

Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales (NSW EPA) (2022) specifies TM-9 (USEPA 13B) for measurement of total fluoride emissions.

Ektimo conducts sampling according to USEPA Method 13B and analysis follows Ektimo 235 (ion chromatography which uses the same principle as the NSW EPA approved alternative analysis method USEPA SW-846 Method 9056A).

#### 7 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

#### 8 Definitions

The following symbols and abbreviations may be used in this test report:

| % v/v                        | Volume to volume ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ~                            | Approximately                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <                            | Less than                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| >                            | Greater than                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ≥                            | Greater than or equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| APHA                         | American Public Health Association, Standard Methods for the Examination of Water and Waste Water                                                                                                                                                                                                                                                                                                                                                                                  |
| AS                           | Australian Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BaP-TEQ                      | Benzo(a)pyrene toxic equivalents                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BSP                          | British standard pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CEM/CEMS                     | Continuous emission monitoring/Continuous emission monitoring system                                                                                                                                                                                                                                                                                                                                                                                                               |
| CTM                          | Conditional test method                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D                            | Duct diameter or equivalent duct diameter for rectangular ducts                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D <sub>50</sub>              | 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e.<br>half of the particles are retained by the cyclone and half pass through it. The $D_{50}$ method simplifies the capture efficiency<br>distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than<br>the $D_{50}$ of that cyclone and less than the $D_{50}$ of the preceding cyclone. |
| DECC                         | Department of Environment & Climate Change (NSW)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Disturbance                  | A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or changes in pipe diameter.                                                                                                                                                                                                |
| EPA                          | Environment Protection Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FTIR                         | Fourier transform infra-red                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ISC                          | Intersociety Committee, Methods of Air Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ISO                          | International Organisation for Standardisation                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ITE                          | Individual threshold estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I-TEQ                        | International toxic equivalents                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lower bound                  | When an analyte is not present above the detection limit, the result is assumed to be equal to zero.                                                                                                                                                                                                                                                                                                                                                                               |
| Medium bound                 | When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.                                                                                                                                                                                                                                                                                                                                                        |
| NA                           | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NATA                         | National Association of Testing Authorities                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NIOSH                        | National Institute of Occupational Safety and Health                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NT                           | Not tested or results not required                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OM<br>OU                     | Other approved method<br>Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from                                                                                                                                                                                                                                                                                                                                  |
|                              | a panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at standard conditions.                                                                                                                                                                                                                                                                                                                                        |
| PM <sub>10</sub>             | Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (µm).                                                                                                                                                                                                                                                                                                                                                                                |
| PM <sub>2.5</sub>            | Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns ( $\mu$ m).                                                                                                                                                                                                                                                                                                                                                                         |
| PSA                          | Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser<br>diffraction.                                                                                                                                                                                                                                                                                                                                             |
| RATA<br>Semi-guantified VOCs | Relative accuracy test audit<br>Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of                                                                                                                                                                                                                                                                                                                            |
| Semi-quantined VOCs          | the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%.<br>An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the<br>analytical calibration standard mixture.                                                                                                                                                                                            |
| STP                          | Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge                                                                                                                                                                                                                                                                                                                                                               |
|                              | oxygen concentration and an absolute pressure of 101.325 kPa.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TM                           | Test method                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ТОС                          | Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus methane and its derivatives.                                                                                                                                                                                                                                                                                                                               |
| USEPA                        | United States Environmental Protection Agency                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Velocity difference          | The percentage difference between the average of initial flows and after flows.                                                                                                                                                                                                                                                                                                                                                                                                    |
| VOC                          | Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or                                                                                                                                                                                                                                                                                                                                                                |
| WHO05-TEQ                    | having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other<br>elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.<br>World Health Organisation toxic equivalents                                                                                                                                                                                            |
| XRD                          | X-ray diffractometry                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Upper bound                  | When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.                                                                                                                                                                                                                                                                                                                                                                |
| 95% confidence interval      | Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside this range.                                                                                                                                                                                                                                                                                                                                        |

Prepared for: Boral Cement Ltd (Berrima) Report No.: R016899-1[DRAFT] Date: 17/06/2024 Page: 16 of 16

### Ektimo

#### 9 Appendices

#### **Appendix A: Site Images**

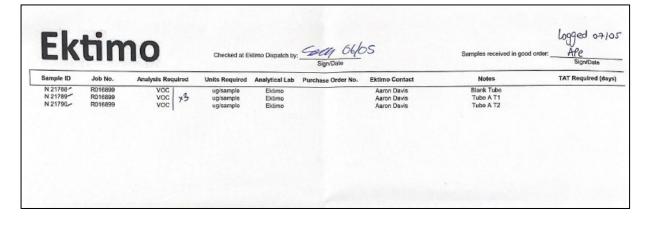



Image 1. EPA 2 – No.6 Kiln Stack

#### Appendix B: Chains of Custody

| Ek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tim                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Checked a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Ektimo Dispatch by <sup>2</sup>                                                                                                                                                                                                                                                                                                        | Sign/Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01/240507 A-<br>Samples received in good or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ier:                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Sample 10<br>N 21815<br>N 21816<br>(S CMC<br>N 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Job No.<br>R016899<br>R016899<br>EPANCY<br>COC<br>815.                                                                                                                                             | Analysis Reg<br>District Forms -<br>Doctors, F | DALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Units Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          | Purchase Order No.<br>Wot3621<br>W013621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes<br>Reski, Rinse + Filter (AUT204429A)<br>Reskin, Rinse + Filter (AUT204429B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAT Resident data<br>N24/009798<br>N24/009799 |
| IV 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 816                                                                                                                                                                                                | N 21815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aur 2404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 A<br>129 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 MAY 2024 11                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 MAY 2024 11                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
| Ek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tim                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Checked at El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | timo Dispatch by: _                                                                                                                                                                                                                                                                                                                      | SimDale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/05                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Samples received in good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | orderSign/Date                                |
| iample D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job No.                                                                                                                                                                                            | Analysis Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analytical Lab                                                                                                                                                                                                                                                                                                                           | Sign/Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ektimo Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sign/Date                                     |
| EK<br>Sample D<br>N 21791<br>N 21792<br>N 21792<br>N 21794<br>N 21795<br>N 21800<br>N 21800<br>N 21805<br>N 21815<br>N 2185<br>N 218                                                                                                                                                                                                                                                                                                                    | यतः च दृष्यः न                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hey Be, Cr, Co, Mn, NI, Se, V, Sh)<br>Hey Be, Cr, Co, Mn, Ni, Se, V, Sh) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sign/Date                                     |
| Sample D<br>N 21791<br>N 21792<br>N 21793<br>N 21793<br>N 21793<br>N 21795<br>N 21601<br>N 21803<br>N 21804<br>N 21805<br>N 21806<br>N 21806<br>N 21808<br>N 218 | Job No.<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899<br>2016899 | Analysis Requit<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Heads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Heads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Heads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Heater Heater (Sb, Ac, Cd, Pb,<br>Heater Heater (Sb, Ac, Cd, Pb,<br>Meads - Type 1 & 2 substances (Sb, Ac, Cd, Pb,<br>Heater Heater (Sb, Ac, Cd, Pb,<br>Heater (Sb, Ac, Cd, Pb,<br>Heate                                                                                                                                                                                                                                       | Hey Be, Cr, Co, Mn, NI, Se, V, Sh)<br>Hey Be, Cr, Co, Mn, Ni, Se, V, Sh) | Units Required<br>uptangle<br>uptangle<br>uptang<br>uptangle<br>uptangle<br>uptangle<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptang<br>uptan | Analytical Lab F<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab<br>Envirolab | Purchase Order No.<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W013628<br>W | Ekilma Contact<br>Aasan Davis<br>Aasan Davis | Notes<br>Blank Flar<br>Blank Solution<br>Blank Solution<br>Blank Solution<br>Blank Solution<br>Flark A (MF3224) 111<br>Metable Kines Teat 1<br>Probe Wash (MF5212) 1211<br>Hot Rims<br>Flark A (MF511) 1212<br>Ing 1-4 Teat 2<br>Probe Wash (MF511) 1212<br>High 4-1 Teat 2<br>Probe Wash (MF511 | order:BigwData<br>TAT Required {              |

| Sample ID                                                                                                                                    | Job No.                                                                                                    | Analysis Required | Units Required                                                                                  | Analytical Lab                                                               | Sign/Date | Ektimo Contact                                                                                                                                     | Notes                                                                                                                            | TAT Required (day |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|
| N 21820-<br>N 21820-<br>N 21822-<br>N 21822-<br>N 21822-<br>N 21822-<br>N 21822-<br>N 21824-<br>N 21825-<br>N 21826-<br>N 21826-<br>N 21826- | R016899<br>R016899<br>R016899<br>R016899<br>R016899<br>R016899<br>R016899<br>R016899<br>R016899<br>R016899 |                   | ugiltre<br>ugiltre<br>ugiltre<br>ugiltre<br>ugiltre<br>ugiltre<br>ugiltre<br>ugiltre<br>ugiltre | Ektimo<br>Ektimo<br>Ektimo<br>Ektimo<br>Ektimo<br>Ektimo<br>Ektimo<br>Ektimo |           | Aaron Davis<br>Aaron Davis<br>Aaron Davis<br>Aaron Davis<br>Aaron Davis<br>Aaron Davis<br>Aaron Davis<br>Aaron Davis<br>Aaron Davis<br>Aaron Davis | Blank Solution<br>Imp B T2<br>Imp B T2<br>Imp B T2<br>Blank Solution<br>Imp B T2<br>Imp B T2<br>Imp B T2<br>Imp B T2<br>Imp B T2 |                   |





Appendix C: Laboratory Results



#### **CERTIFICATE OF ANALYSIS**

| Testing Laboratory:         | Ektimo<br>26 Redland Drive<br>Mitcham, VIC 3132 |
|-----------------------------|-------------------------------------------------|
| Report Number:              | LV-005740                                       |
| Job Number:                 | R016899                                         |
| Date of Issue:              | 10/05/2024                                      |
|                             |                                                 |
| Attention:                  | Boral Berima                                    |
| Address:                    | Taylor Avenue, New Berrima NSW 2577             |
|                             |                                                 |
| Date samples received:      | 7/05/2024                                       |
| Number of samples received: | 3                                               |
| Date samples analysed:      | 10/05/2024                                      |
| No of samples analysed:     | 3                                               |
|                             |                                                 |
| Test method(s) used:        | Ektimo 344                                      |
|                             |                                                 |

Comments

| QC Acceptance Criteria: | Parameter       | Criteria                              | Pass/Fail |
|-------------------------|-----------------|---------------------------------------|-----------|
|                         | Standard Curve  | R <sup>2</sup> > 0.99                 | Pass      |
|                         | Range           | All samples <110% of highest standard | Pass      |
|                         | Repeat samples  | Between 80% - 120%                    | Pass      |
|                         | Method Blanks   | All method blanks < PQL               | Pass      |
|                         | QC sample       | 2 standard deviations of theoretical  | Pass      |
|                         | Chemical Expiry | All chemicals within expiry date      | Pass      |

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au. Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the

testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

|   |    | 0 |   |
|---|----|---|---|
| / | 21 | 1 |   |
| 0 | at | - | - |

Matthew Cook Laboratory Manager



Cappi Tuffery Laboratory Chemist

#### **REPORT AUTHORISATION**

Version 231130



NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Ektimo PTY LTD • ABN 86 600 381 413

**Melbourne, VIC (Head Office)** 26 Redland Drive, Mitcham, VIC 3132 **Perth, WA (Postal Address)** 52 Cooper Road, Cockburn Central, WA 6164 **Sydney, NSW** 6/78 Reserve Road, Artarmon, NSW 2064 Wollongong, NSW 1/251 Princes Highway, Unanderra, NSW 2526 **Brisbane, QLD** 3/109 Riverside Place, Morningside, QLD 4170

### **Analytical Results**

#### Report No. LV-005740

Job No. R016899

#### **Client Name: Boral Berima**

| Parameter                  | Units | N21788<br>R016899 | N21789<br>R016899 | N21790<br>R016899 |
|----------------------------|-------|-------------------|-------------------|-------------------|
|                            | PQL   | 1.0               | 1.0               | 1.0               |
| Ethanol                    | μg    | <1                | <1                | <1                |
| Acetone                    | μg    | <1                | <1                | <1                |
| Isopropanol                | μg    | <1                | <1                | <1                |
| Pentane                    | μg    | <1                | <1                | <1                |
| 1,1-Dichloroethene         | μg    | <1                | <1                | <1                |
| Acrylonitrile              | μg    | <1                | 2.2               | 1.9               |
| Dichloromethane            | μg    | <1                | <1                | <1                |
| trans-1,2-Dichloroethene   | μg    | <1                | <1                | <1                |
| Methyl ethyl ketone        | μg    | <1                | <1                | <1                |
| n-Hexane                   | μg    | <1                | <1                | <1                |
| cis-1,2-Dichloroethene     | μg    | <1                | <1                | <1                |
| Ethyl acetate              | μg    | <1                | <1                | <1                |
| Chloroform                 | μg    | <1                | <1                | <1                |
| 1,1,1-Trichloroethane      | μg    | <1                | <1                | <1                |
| 1,2-Dichloroethane         | μg    | <1                | <1                | <1                |
| Cyclohexane                | μg    | <1                | <1                | <1                |
| Benzene                    | μg    | <1                | 24                | 20                |
| Carbon tetrachloride       | μg    | <1                | <1                | <1                |
| Butanol                    | μg    | <1                | <1                | <1                |
| Isopropyl acetate          | μg    | <1                | <1                | <1                |
| 2-Methylhexane             | μg    | <1                | <1                | <1                |
| 2,3-Dimethylpentane        | μg    | <1                | <1                | <1                |
| 1-Methoxy-2-propanol       | μg    | <1                | <1                | <1                |
| 3-Methylhexane             | μg    | <1                | <1                | <1                |
| Heptane                    | μg    | <1                | <1                | <1                |
| Trichloroethylene          | μg    | <1                | <1                | <1                |
| Ethyl acrylate             | μg    | <1                | <1                | <1                |
| Methyl methacrylate        | μg    | <1                | <1                | <1                |
| Propyl acetate             | μg    | <1                | <1                | <1                |
| Methylcyclohexane          | μg    | <1                | 1.6               | 1.4               |
| Methyl Isobutyl Ketone     | μg    | <1                | <1                | <1                |
| Toluene                    | μg    | <1                | 3.5               | 3                 |
| 1,1,2-Trichloroethane      | μg    | <1                | <1                | <1                |
| 2-Hexanone                 | μg    | <1                | <1                | <1                |
| Octane                     | μg    | <1                | 2                 | 1.3               |
| Tetrachloroethene          | μg    | <1                | <1                | <1                |
| Butyl acetate              | μg    | <1                | <1                | <1                |
| Chlorobenzene              | μg    | <1                | <1                | <1                |
| Ethylbenzene               | μg    | <1                | <1                | <1                |
| m + p-Xylene               | μg    | <1                | 1.2               | 1                 |
| 1-Methoxy-2-propyl acetate | μg    | <1                | <1                | <1                |
| Styrene                    | μg    | <1                | <1                | <1                |
| o-Xylene                   | μg    | <1                | <1                | <1                |
| Butyl acrylate             | μg    | <1                | <1                | <1                |
| Nonane                     | μg    | <1                | <1                | <1                |



\* Results marked with an asterisk are outside the acceptable calibration range of the instrument.

### **Analytical Results**

#### Report No. LV-005740

Job No. R016899

#### **Client Name: Boral Berima**

| Parameter                 | Units | N21788<br>R016899 | N21789<br>R016899 | N21790<br>R016899 |
|---------------------------|-------|-------------------|-------------------|-------------------|
|                           | PQL   | 1.0               | 1.0               | 1.0               |
| 2-Butoxyethanol           | μg    | <1                | <1                | <1                |
| Cellosolve acetate        | μg    | <1                | <1                | <1                |
| 1,1,2,2-Tetrachloroethane | μg    | <1                | <1                | <1                |
| Isopropylbenzene          | μg    | <1                | <1                | <1                |
| alpha-Pinene              | μg    | <1                | <1                | <1                |
| Propylbenzene             | μg    | <1                | <1                | <1                |
| 1,3,5-Trimethylbenzene    | μg    | <1                | <1                | <1                |
| beta-Pinene               | μg    | <1                | <1                | <1                |
| tert-Butylbenzene         | μg    | <1                | <1                | <1                |
| 1,2,4-Trimethylbenzene    | μg    | <1                | <1                | <1                |
| Decane                    | μg    | <1                | <1                | <1                |
| 3-Carene                  | μg    | <1                | <1                | <1                |
| 1,2,3-Trimethylbenzene    | μg    | <1                | <1                | <1                |
| D-Limonene                | μg    | <1                | <1                | <1                |
| Undecane                  | μg    | <1                | <1                | <1                |
| Dodecane                  | μg    | <1                | <1                | <1                |
| Tridecane                 | μg    | <1                | <1                | <1                |
| Tetradecane               | μg    | <1                | <1                | <1                |
| Residuals as Toluene      | μg    | <1                | 17                | 12                |



\* Results marked with an asterisk are outside the acceptable calibration range of the instrument.



#### **CERTIFICATE OF ANALYSIS**

| Testing Laboratory:         | Ektimo<br>26 Redland Drive<br>Mitcham, VIC 3132 |
|-----------------------------|-------------------------------------------------|
| Report Number:              | LV-005786                                       |
| Job Number:                 | R016899                                         |
| Date of Issue:              | 23/05/2024                                      |
| Attention:                  | Boral Berrima                                   |
| Address:                    | Taylor Avenue, New Berrima NSW 2577             |
| Date samples received:      | 7/05/2024                                       |
| Number of samples received: | 10                                              |
| Date samples analysed:      | 17/05/2024                                      |
| No of samples analysed:     | 10                                              |
| Test method(s) used:        | Ektimo 235                                      |

Comments

| QC Acceptance Criteria: | Parameter       | Criteria                              | Pass/Fail |
|-------------------------|-----------------|---------------------------------------|-----------|
|                         | Standard Curve  | R <sup>2</sup> > 0.99                 | Pass      |
|                         | Range           | All samples <110% of highest standard | Pass      |
|                         | Repeat samples  | Between 80% - 120%                    | Pass      |
|                         | Method Blanks   | All method blanks < PQL               | Pass      |
|                         | QC sample       | 2 standard deviations of theoretical  | Pass      |
|                         | Chemical Expiry | All chemicals within expiry date      | Pass      |

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au. Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the

testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

| (q) |  |
|-----|--|
| /   |  |

Cappi Tuffery Laboratory Chemist



Matthew Cook Laboratory Manager

#### **REPORT AUTHORISATION**

Version 231130



NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Ektimo PTY LTD • ABN 86 600 381 413

**Melbourne, VIC (Head Office)** 26 Redland Drive, Mitcham, VIC 3132 **Perth, WA (Postal Address)** 52 Cooper Road, Cockburn Central, WA 6164 **Sydney, NSW** 6/78 Reserve Road, Artarmon, NSW 2064 Wollongong, NSW 1/251 Princes Highway, Unanderra, NSW 2526 **Brisbane, QLD** 3/109 Riverside Place, Morningside, QLD 4170

#### Report No. LV-005786 Job No. R016899 Client Name: Boral Berrima

| Parameter                   | Analyte | Units | N 21819 Boral<br>Berrima EPA 2<br>Kiln Blank<br>Solution (HCI) | N 21820 Boral<br>Berrima EPA 2<br>Kiln Imp A T1 | N 21821 Boral<br>Berrima EPA 2<br>Kiln Imp B T2 | N 21822 Boral<br>Berrima EPA 2<br>Kiln Imp A T2 | N 21823 Boral<br>Berrima EPA 2<br>Kiln Imp B T2 | N 21824 Boral<br>Berrima EPA 2<br>Kiln Blank<br>Solution (Cl2) | N 21825 Boral<br>Berrima EPA 2<br>Kiln Imp A T1 | N 21826 Boral<br>Berrima EPA 2<br>Kiln Imp B T2 |
|-----------------------------|---------|-------|----------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
|                             |         |       |                                                                |                                                 |                                                 |                                                 |                                                 |                                                                |                                                 |                                                 |
| Sample Volume               |         | mL    | 25                                                             | 20                                              | 11.5                                            | 12.5                                            | 14.5                                            | 25                                                             | 10.5                                            | 14                                              |
| Hydrogen chloride (HCl)     | Cl      | mg/L  | <0.1                                                           | 3.77                                            | 2.00                                            | 0.93                                            | 1.15                                            |                                                                |                                                 |                                                 |
| Chlorine (Cl <sub>2</sub> ) | Cl      | mg/L  |                                                                |                                                 |                                                 |                                                 |                                                 | <0.1                                                           | 0.65                                            | 0.90                                            |
|                             |         |       |                                                                |                                                 |                                                 |                                                 |                                                 |                                                                |                                                 |                                                 |
| PQL                         | <       | mg/L  | 0.1                                                            | 0.1                                             | 0.1                                             | 0.1                                             | 0.1                                             | 0.1                                                            | 0.1                                             | 0.1                                             |

| Parameter                   | Analyte | Units |      | N 21828 Boral<br>Berrima EPA 2<br>Kiln Imp B T2 |  |  |  |
|-----------------------------|---------|-------|------|-------------------------------------------------|--|--|--|
|                             |         |       |      |                                                 |  |  |  |
| Sample Volume               |         | mL    | 13   | 11.5                                            |  |  |  |
| Chlorine (Cl <sub>2</sub> ) | Cl      | mg/L  | 0.78 | 0.38                                            |  |  |  |
|                             |         |       |      |                                                 |  |  |  |
| PQL                         | <       | mg/L  | 0.1  | 0.1                                             |  |  |  |



#### **CERTIFICATE OF ANALYSIS**

| Testing Laboratory:         | Ektimo<br>26 Redland Drive<br>Mitcham, VIC 3132 |
|-----------------------------|-------------------------------------------------|
| Report Number:              | LV-005755                                       |
| Job Number:                 | R016899                                         |
| Date of Issue:              | 14/05/2024                                      |
|                             |                                                 |
| Attention:                  | Boral Berrima                                   |
| Address:                    | Taylor Avenue, New Berrima NSW 2577             |
|                             |                                                 |
| Date samples received:      | 7/05/2024                                       |
| Number of samples received: | 6                                               |
| Date samples analysed:      | 10/05/2024                                      |
| No of samples analysed:     | 6                                               |
| Tash washa dia baada        |                                                 |
| Test method(s) used:        | Ektimo 235                                      |
|                             |                                                 |

Comments

| QC Acceptance Criteria: | Parameter       | Criteria                              | Pass/Fail |
|-------------------------|-----------------|---------------------------------------|-----------|
|                         | Standard Curve  | R <sup>2</sup> > 0.99                 | Pass      |
|                         | Range           | All samples <110% of highest standard | Pass      |
|                         | Repeat samples  | Between 80% - 120%                    | Pass      |
|                         | Method Blanks   | All method blanks < PQL               | Pass      |
|                         | QC sample       | 2 standard deviations of theoretical  | Pass      |
|                         | Chemical Expiry | All chemicals within expiry date      | Pass      |

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au. Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the

testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world –wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

| (q) |  |
|-----|--|
| /   |  |

Cappi Tuffery Laboratory Chemist



Matthew Cook Laboratory Manager

#### **REPORT AUTHORISATION**

Version 231130



NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Ektimo PTY LTD • ABN 86 600 381 413

**Melbourne, VIC (Head Office)** 26 Redland Drive, Mitcham, VIC 3132 **Perth, WA (Postal Address)** 52 Cooper Road, Cockburn Central, WA 6164 **Sydney, NSW** 6/78 Reserve Road, Artarmon, NSW 2064 Wollongong, NSW 1/251 Princes Highway, Unanderra, NSW 2526 **Brisbane, QLD** 3/109 Riverside Place, Morningside, QLD 4170

### **Analytical Results**

#### Report No. LV-005755 Job No. R016899 Client Name: Boral Berrima

| Parameter                          | Analyte           | Units | N 21783 Boral<br>Berrima All<br>Locations Blank<br>Solution (SO2) | N 21785 Boral<br>Berrima EPA 2<br>Kiln Imp B Test<br>1 | Berrima EPA | N 21782 Boral<br>Berrima All<br>Locations<br>Blank Solution<br>(SO3) | N 21784<br>Boral<br>Berrima EPA<br>2 Kiln Imp A<br>Test 1 | N 21786 Boral<br>Berrima EPA 2<br>Kiln Imp A<br>Test 2 |
|------------------------------------|-------------------|-------|-------------------------------------------------------------------|--------------------------------------------------------|-------------|----------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|
|                                    |                   |       |                                                                   |                                                        |             |                                                                      |                                                           |                                                        |
| Sample Volume                      |                   | mL    | 174                                                               | 232                                                    | 210         | 186                                                                  | 162                                                       | 175                                                    |
| Sulfur dioxide (SO <sub>2</sub> )  | SO4 <sup>2-</sup> | mg/L  | 0.28                                                              | 0.36                                                   | 0.49        |                                                                      |                                                           |                                                        |
| Sulfur trioxide (SO <sub>3</sub> ) | SO4 <sup>2-</sup> | mg/L  |                                                                   |                                                        |             | 0.24                                                                 | 0.83                                                      | 0.56                                                   |
| PQL                                | <                 | mg/L  | 0.2                                                               | 0.2                                                    | 0.2         | 0.2                                                                  | 0.2                                                       | 0.2                                                    |



#### **CERTIFICATE OF ANALYSIS**

| Testing Laboratory:         | Ektimo<br>26 Redland Drive<br>Mitcham, VIC 3132 |
|-----------------------------|-------------------------------------------------|
| Report Number:              | LV-005865                                       |
| Job Number:                 | R016899                                         |
| Date of Issue:              | 3/06/2024                                       |
|                             |                                                 |
| Attention:                  | Boral Berrima                                   |
| Address:                    | Taylor Avenue, New Berrima NSW 2577             |
|                             |                                                 |
| Date samples received:      | 17/05/2024                                      |
| Number of samples received: | 3                                               |
| Date samples analysed:      | 31/05/2024                                      |
| No of samples analysed:     | 3                                               |
| Test method(s) used:        | Ektimo 235                                      |

Comments

| QC Acceptance Criteria: | Parameter       | Criteria                              | Pass/Fail |
|-------------------------|-----------------|---------------------------------------|-----------|
|                         | Standard Curve  | R <sup>2</sup> > 0.99                 | Pass      |
|                         | Range           | All samples <110% of highest standard | Pass      |
|                         | Repeat samples  | Between 80% - 120%                    | Pass      |
|                         | Method Blanks   | All method blanks < PQL               | Pass      |
|                         | QC sample       | 2 standard deviations of theoretical  | Pass      |
|                         | Chemical Expiry | All chemicals within expiry date      | Pass      |

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au. Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with

both of these organisations, NATA accreditation is recognised world –wide. A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the

sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

### (g)

Cappi Tuffery Laboratory Chemist



Daniel Balaam Senior Laboratory Chemist

#### **REPORT AUTHORISATION**

Version 231130



NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Ektimo PTY LTD • ABN 86 600 381 413

**Melbourne, VIC (Head Office)** 26 Redland Drive, Mitcham, VIC 3132 **Perth, WA (Postal Address)** 52 Cooper Road, Cockburn Central, WA 6164 **Sydney, NSW** 6/78 Reserve Road, Artarmon, NSW 2064 Wollongong, NSW 1/251 Princes Highway, Unanderra, NSW 2526 **Brisbane, QLD** 3/109 Riverside Place, Morningside, QLD 4170



## Analytical Results

#### Report No. LV-005865 Job No. R016899 Client Name: Boral Berrima

| Parameter              | Analyte | Units     | N 21816 Boral<br>Berrima All<br>Locations Blank<br>Filter | N 21817 Boral<br>Berrima EPA 2<br>Kiln Filter A Test<br>1 | N 21818 Boral<br>Berrima EPA 2<br>Kiln Filter A Test<br>2 |
|------------------------|---------|-----------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|                        |         |           |                                                           |                                                           |                                                           |
| Sample Volume          |         | mL        | 40                                                        | 40                                                        | 40                                                        |
| Hydrogen fluoride (HF) | F       | µg/sample | <4                                                        | <4                                                        | <4                                                        |
| PQL                    | <       | µg/sample | 4                                                         | 4                                                         | 4                                                         |

## Ektimo



### **CERTIFICATE OF ANALYSIS**

| Testing Laboratory:           | Ektimo<br>26 Redland Drive<br>Mitcham, VIC 3132 |
|-------------------------------|-------------------------------------------------|
| Report Number:                | LV-005863                                       |
| Job Number:<br>Date of Issue: | R016899                                         |
| Date of issue:                | 3/06/2024                                       |
| Attention:                    | Boral Berrima                                   |
| Address:                      | Taylor Avenue, New Berrima NSW 2577             |
|                               |                                                 |
| Date samples received:        | 17/05/2024                                      |
| Number of samples received:   | 3                                               |
| Date samples analysed:        | 31/05/2024                                      |
| No of samples analysed:       | 3                                               |
| Test method(s) used:          | Ektimo 235                                      |

Comments

| QC Acceptance Criteria: | Parameter       | Criteria                              | Pass/Fail |
|-------------------------|-----------------|---------------------------------------|-----------|
|                         | Standard Curve  | R <sup>2</sup> > 0.99                 | Pass      |
|                         | Range           | All samples <110% of highest standard | Pass      |
|                         | Repeat samples  | Between 80% - 120%                    | Pass      |
|                         | Method Blanks   | All method blanks < PQL               | Pass      |
|                         | QC sample       | 2 standard deviations of theoretical  | Pass      |
|                         | Chemical Expiry | All chemicals within expiry date      | Pass      |

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au. Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with

both of these organisations, NATA accreditation is recognised world –wide. A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the

sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

## q

Cappi Tuffery Laboratory Chemist



Daniel Balaam Senior Laboratory Chemist

#### **REPORT AUTHORISATION**

Version 231130



NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Ektimo PTY LTD • ABN 86 600 381 413

**Melbourne, VIC (Head Office)** 26 Redland Drive, Mitcham, VIC 3132 **Perth, WA (Postal Address)** 52 Cooper Road, Cockburn Central, WA 6164 **Sydney, NSW** 6/78 Reserve Road, Artarmon, NSW 2064 Wollongong, NSW 1/251 Princes Highway, Unanderra, NSW 2526 **Brisbane, QLD** 3/109 Riverside Place, Morningside, QLD 4170



#### Report No. LV-005863 Job No. R016899 **Client Name: Boral Berrima**

| Parameter              | Analyte | Units | N 21829 Boral<br>Berrima All<br>Locations Blank<br>Solution (HF) | N 21830 Boral<br>Berrima EPA 2<br>Kiln Imp A+B<br>Test 1 | N 21831 Boral<br>Berrima EPA 2<br>Kiln Imp A+B<br>Test 2 |
|------------------------|---------|-------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                        |         |       |                                                                  |                                                          |                                                          |
| Sample Volume          |         | mL    | 200                                                              | 345                                                      | 325                                                      |
| Hydrogen fluoride (HF) | F       | mg/L  | <0.1                                                             | <0.1                                                     | <0.1                                                     |
| PQL                    | <       | mg/L  | 0.1                                                              | 0.1                                                      | 0.1                                                      |



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 350913**

| Client Details |                                         |
|----------------|-----------------------------------------|
| Client         | Ektimo (Unanderra)                      |
| Attention      | Administration Email                    |
| Address        | 1/251 Princes Hwy, Unanderra, NSW, 2526 |

| Sample Details                       |                    |
|--------------------------------------|--------------------|
| Your Reference                       | <u>R016899</u>     |
| Number of Samples                    | 6 Filter, 17 Water |
| Date samples received                | 10/05/2024         |
| Date completed instructions received | 10/05/2024         |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                   |                                                                      |
|----------------------------------|----------------------------------------------------------------------|
| Date results requested by        | 17/05/2024                                                           |
| Date of Issue                    | 17/05/2024                                                           |
| NATA Accreditation Number 29     | 1. This document shall not be reproduced except in full.             |
| Accredited for compliance with I | SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |

**<u>Results Approved By</u>** Loren Bardwell, Development Chemist Priya Samarawickrama, Senior Chemist Authorised By Nancy Zhang, Laboratory Manager



| Metals on filters |           |            |            |            |
|-------------------|-----------|------------|------------|------------|
| Our Reference     |           | 350913-1   | 350913-6   | 350913-12  |
| Your Reference    | UNITS     | N21791     | N21796     | N21802     |
| Type of sample    |           | Filter     | Filter     | Filter     |
| Date prepared     | -         | 17/05/2024 | 17/05/2024 | 17/05/2024 |
| Date analysed     | -         | 17/05/2024 | 17/05/2024 | 17/05/2024 |
| Antimony          | µg/filter | <5         | <5         | <5         |
| Arsenic           | µg/filter | <2         | <2         | <2         |
| Cadmium           | µg/filter | <0.5       | <0.5       | <0.5       |
| Lead              | µg/filter | <1         | <1         | <1         |
| Mercury           | µg/filter | <0.2       | <0.2       | <0.2       |
| Beryllium         | µg/filter | <0.5       | <0.5       | <0.5       |
| Chromium          | µg/filter | 1          | 0.8        | 2          |
| Cobalt            | µg/filter | <0.5       | <0.5       | <0.5       |
| Manganese         | µg/filter | <0.5       | 4          | 5.9        |
| Nickel            | µg/filter | <1         | <1         | <1         |
| Selenium          | µg/filter | <5         | <5         | <5         |
| Vanadium          | µg/filter | <1         | <1         | <1         |
| Tin               | µg/filter | <2         | <2         | <2         |
| Barium            | µg/filter | <1         | <1         | 1          |
| Copper            | µg/filter | <0.5       | <0.5       | <0.5       |
| Phosphorus        | µg/filter | <2         | 3          | 3          |
| Silver            | µg/filter | <0.5       | <0.5       | <0.5       |
| Thallium          | µg/filter | <2         | <2         | <2         |
| Zinc              | µg/filter | 2          | 3          | 1          |

| Metals in water - mass units |       |            |            |            |            |            |
|------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                |       | 350913-2   | 350913-3   | 350913-4   | 350913-5   | 350913-7   |
| Your Reference               | UNITS | N21792     | N21793     | N21794     | N21795     | N21797     |
| Type of sample               |       | Water      | Water      | Water      | Water      | Water      |
| Volume                       | mL    | 228        | 197        | 424        | 221        | 308        |
| Antimony                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Arsenic                      | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Cadmium                      | μg    | <0.05      | <0.05      | [NA]       | [NA]       | <0.05      |
| Lead                         | μg    | <0.5       | <0.5       | [NA]       | [NA]       | 0.5        |
| Mercury                      | μg    | <10        | <10        | <1         | <0.5       | <10        |
| Beryllium                    | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Chromium                     | μg    | 0.6        | <0.5       | [NA]       | [NA]       | 0.6        |
| Cobalt                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Manganese                    | μg    | <3         | <3         | [NA]       | [NA]       | <3         |
| Nickel                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | 0.6        |
| Selenium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Vanadium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Tin                          | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Barium                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Copper                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | 0.8        |
| Silver                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Thallium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Zinc                         | μg    | 0.8        | <0.5       | [NA]       | [NA]       | 3          |
| Date prepared                | -     | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Date analysed                | -     | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Antimony-Dissolved           | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Arsenic-Dissolved            | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Cadmium-Dissolved            | µg/L  | <0.1       | <0.1       | [NA]       | [NA]       | 0.1        |
| Lead-Dissolved               | µg/L  | <1         | <1         | [NA]       | [NA]       | 2          |
| Mercury-Dissolved            | µg/L  | <1         | <1         | <0.1       | <0.05      | <1         |
| Beryllium-Dissolved          | µg/L  | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Chromium-Dissolved           | µg/L  | 3          | <1         | [NA]       | [NA]       | 2          |
| Cobalt-Dissolved             | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Manganese-Dissolved          | µg/L  | <5         | <5         | [NA]       | [NA]       | <5         |
| Nickel-Dissolved             | µg/L  | 1          | <1         | [NA]       | [NA]       | 2          |
| Selenium-Dissolved           | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Vanadium-Dissolved           | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Tin-Dissolved                | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Barium-Dissolved             | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Copper-Dissolved             | µg/L  | <1         | <1         | [NA]       | [NA]       | 3          |
| Silver-Dissolved             | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |

| Metals in water - mass units |       |          |          |          |          |          |
|------------------------------|-------|----------|----------|----------|----------|----------|
| Our Reference                |       | 350913-2 | 350913-3 | 350913-4 | 350913-5 | 350913-7 |
| Your Reference               | UNITS | N21792   | N21793   | N21794   | N21795   | N21797   |
| Type of sample               |       | Water    | Water    | Water    | Water    | Water    |
| Thallium-Dissolved           | µg/L  | <1       | <1       | [NA]     | [NA]     | <1       |
| Zinc-Dissolved               | µg/L  | 4        | <1       | [NA]     | [NA]     | 10       |

| Metals in water - mass units |       |            |            |            |            |            |
|------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                |       | 350913-8   | 350913-9   | 350913-10  | 350913-11  | 350913-13  |
| Your Reference               | UNITS | N21798     | N21799     | N21800     | N21801     | N21803     |
| Type of sample               |       | Water      | Water      | Water      | Water      | Water      |
| Volume                       | mL    | 112        | 36         | 406        | 220        | 329        |
| Antimony                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Arsenic                      | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Cadmium                      | μg    | <0.05      | 0.2        | [NA]       | [NA]       | <0.05      |
| Lead                         | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Mercury                      | μg    | <10        | <10        | 3          | <0.5       | <10        |
| Beryllium                    | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Chromium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | 0.8        |
| Cobalt                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Manganese                    | μg    | <3         | <3         | [NA]       | [NA]       | <3         |
| Nickel                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | 0.9        |
| Selenium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Vanadium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Tin                          | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Barium                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | 0.6        |
| Copper                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | 3          |
| Silver                       | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Thallium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Zinc                         | μg    | 3          | 1          | [NA]       | [NA]       | 5          |
| Date prepared                | -     | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Date analysed                | -     | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Antimony-Dissolved           | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Arsenic-Dissolved            | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Cadmium-Dissolved            | µg/L  | <0.1       | 6.1        | [NA]       | [NA]       | 0.1        |
| Lead-Dissolved               | µg/L  | <1         | 5          | [NA]       | [NA]       | 1          |
| Mercury-Dissolved            | µg/L  | <1         | <1         | 7.1        | 0.3        | <1         |
| Beryllium-Dissolved          | µg/L  | <0.5       | <0.5       | [NA]       | [NA]       | <0.5       |
| Chromium-Dissolved           | µg/L  | <1         | 12         | [NA]       | [NA]       | 2          |
| Cobalt-Dissolved             | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Manganese-Dissolved          | µg/L  | <5         | 82         | [NA]       | [NA]       | 6          |
| Nickel-Dissolved             | µg/L  | 1          | 11         | [NA]       | [NA]       | 3          |
| Selenium-Dissolved           | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Vanadium-Dissolved           | µg/L  | <1         | 9          | [NA]       | [NA]       | <1         |
| Tin-Dissolved                | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |
| Barium-Dissolved             | µg/L  | <1         | 10         | [NA]       | [NA]       | 2          |
| Copper-Dissolved             | µg/L  | 1          | 8          | [NA]       | [NA]       | 9          |
| Silver-Dissolved             | µg/L  | <1         | <1         | [NA]       | [NA]       | <1         |

| Metals in water - mass units |       |          |          |           |           |           |
|------------------------------|-------|----------|----------|-----------|-----------|-----------|
| Our Reference                |       | 350913-8 | 350913-9 | 350913-10 | 350913-11 | 350913-13 |
| Your Reference               | UNITS | N21798   | N21799   | N21800    | N21801    | N21803    |
| Type of sample               |       | Water    | Water    | Water     | Water     | Water     |
| Thallium-Dissolved           | µg/L  | <1       | 5        | [NA]      | [NA]      | <1        |
| Zinc-Dissolved               | µg/L  | 22       | 36       | [NA]      | [NA]      | 14        |

| Metals in water - mass units |       |            |            |            |            |
|------------------------------|-------|------------|------------|------------|------------|
| Our Reference                |       | 350913-14  | 350913-15  | 350913-16  | 350913-17  |
| Your Reference               | UNITS | N21804     | N21805     | N21806     | N21807     |
| Type of sample               |       | Water      | Water      | Water      | Water      |
| Volume                       | mL    | 93         | 38         | 440        | 218        |
| Antimony                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       |
| Arsenic                      | μg    | <0.5       | <0.5       | [NA]       | [NA]       |
| Cadmium                      | μg    | <0.05      | <0.05      | [NA]       | [NA]       |
| Lead                         | μg    | <0.5       | <0.5       | [NA]       | [NA]       |
| Mercury                      | μg    | <10        | <10        | 4          | <0.5       |
| Beryllium                    | μg    | <0.5       | <0.5       | [NA]       | [NA]       |
| Chromium                     | μg    | <0.5       | <0.5       | [NA]       | [NA]       |
| Cobalt                       | hâ    | <0.5       | <0.5       | [NA]       | [NA]       |
| Manganese                    | μg    | 8          | <3         | [NA]       | [NA]       |
| Nickel                       | рд    | <0.5       | <0.5       | [NA]       | [NA]       |
| Selenium                     | hð    | <0.5       | <0.5       | [NA]       | [NA]       |
| Vanadium                     | hà    | <0.5       | <0.5       | [NA]       | [NA]       |
| Tin                          | hà    | <0.5       | <0.5       | [NA]       | [NA]       |
| Barium                       | hâ    | <0.5       | <0.5       | [NA]       | [NA]       |
| Copper                       | hà    | <0.5       | <0.5       | [NA]       | [NA]       |
| Silver                       | hà    | <0.5       | <0.5       | [NA]       | [NA]       |
| Thallium                     | hà    | <0.5       | <0.5       | [NA]       | [NA]       |
| Zinc                         | hà    | 2          | 0.7        | [NA]       | [NA]       |
| Date prepared                | -     | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Date analysed                | -     | 15/05/2024 | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Antimony-Dissolved           | µg/L  | <1         | <1         | [NA]       | [NA]       |
| Arsenic-Dissolved            | µg/L  | <1         | <1         | [NA]       | [NA]       |
| Cadmium-Dissolved            | µg/L  | 0.2        | 1.1        | [NA]       | [NA]       |
| Lead-Dissolved               | µg/L  | 2          | 7          | [NA]       | [NA]       |
| Mercury-Dissolved            | µg/L  | <1         | <1         | 9.2        | <0.05      |
| Beryllium-Dissolved          | µg/L  | <0.5       | <0.5       | [NA]       | [NA]       |
| Chromium-Dissolved           | µg/L  | <1         | 4          | [NA]       | [NA]       |
| Cobalt-Dissolved             | µg/L  | <1         | <1         | [NA]       | [NA]       |
| Manganese-Dissolved          | µg/L  | 81         | 73         | [NA]       | [NA]       |
| Nickel-Dissolved             | µg/L  | 2          | 3          | [NA]       | [NA]       |
| Selenium-Dissolved           | µg/L  | <1         | <1         | [NA]       | [NA]       |
| Vanadium-Dissolved           | µg/L  | <1         | 9          | [NA]       | [NA]       |
| Tin-Dissolved                | µg/L  | <1         | <1         | [NA]       | [NA]       |
| Barium-Dissolved             | µg/L  | <1         | 12         | [NA]       | [NA]       |
| Copper-Dissolved             | µg/L  | 2          | 11         | [NA]       | [NA]       |
| Silver-Dissolved             | µg/L  | <1         | 1          | [NA]       | [NA]       |

| Metals in water - mass units |       |           |           |           |           |
|------------------------------|-------|-----------|-----------|-----------|-----------|
| Our Reference                |       | 350913-14 | 350913-15 | 350913-16 | 350913-17 |
| Your Reference               | UNITS | N21804    | N21805    | N21806    | N21807    |
| Type of sample               |       | Water     | Water     | Water     | Water     |
| Thallium-Dissolved           | µg/L  | <1        | 6         |           | [NA]      |
| Zinc-Dissolved               | µg/L  | 25        | 19        |           | [NA]      |

| Metals in Waters - mass units |       |            |            |            |            |            |
|-------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                 |       | 350913-2   | 350913-3   | 350913-7   | 350913-8   | 350913-9   |
| Your Reference                | UNITS | N21792     | N21793     | N21797     | N21798     | N21799     |
| Type of sample                |       | Water      | Water      | Water      | Water      | Water      |
| Date digested                 | -     | 17/05/2024 | 17/05/2024 | 17/05/2024 | 17/05/2024 | 17/05/2024 |
| Date analysed                 | -     | 17/05/2024 | 17/05/2024 | 17/05/2024 | 17/05/2024 | 17/05/2024 |
| Phosphorus                    | mg    | 0.08       | <0.05      | 0.07       | <0.05      | <0.05      |
| Phosphorus - Dissolved        | mg/L  | 0.4        | <0.05      | 0.2        | <0.05      | <0.05      |

| Metals in Waters - mass units |       |            |            |            |
|-------------------------------|-------|------------|------------|------------|
| Our Reference                 |       | 350913-13  | 350913-14  | 350913-15  |
| Your Reference                | UNITS | N21803     | N21804     | N21805     |
| Type of sample                |       | Water      | Water      | Water      |
| Date digested                 | -     | 17/05/2024 | 17/05/2024 | 17/05/2024 |
| Date analysed                 | -     | 17/05/2024 | 17/05/2024 | 17/05/2024 |
| Phosphorus                    | mg    | 0.07       | <0.05      | <0.05      |
| Phosphorus - Dissolved        | mg/L  | 0.2        | <0.05      | <0.05      |

| Inorganics in Wipes     |           |            |            |            |
|-------------------------|-----------|------------|------------|------------|
| Our Reference           |           | 350913-18  | 350913-19  | 350913-20  |
| Your Reference          | UNITS     | N21808     | N21809     | N21810     |
| Type of sample          |           | Filter     | Filter     | Filter     |
| Date prepared           | -         | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Date analysed           | -         | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Hexavalent Cr in filter | µg/filter | 1.2        | 1.2        | 2.2        |

| Miscellaneous Inorganics                          |           |            |            |            |
|---------------------------------------------------|-----------|------------|------------|------------|
| Our Reference                                     |           | 350913-21  | 350913-22  | 350913-23  |
| Your Reference                                    | UNITS     | N21811     | N21812     | N21813     |
| Type of sample                                    |           | Water      | Water      | Water      |
| Date prepared                                     | -         | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Date analysed                                     | -         | 15/05/2024 | 15/05/2024 | 15/05/2024 |
| Volume                                            | mL        | 200        | 340        | 350        |
| Hexavalent Chromium, Cr <sup>6+</sup> (dissolved) | mg/L      | <0.005     | 0.12       | <0.005     |
| Hexavalent Chromium, Cr <sup>6+</sup>             | µg/sample | <5         | 40         | <5         |

| Method ID          | Methodology Summary                                                                                                                                                                                                                                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-118          | Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.                                                                                                                                                                       |
|                    | Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.                                         |
|                    | Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI. |
|                    | Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.                                                                   |
|                    | Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.                                                                                                                                                                                                                        |
| Metals-020         | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                                   |
| Metals-020/021/022 | Determination of various metals on filters by ICP-AES/MS and or CV/AAS. Note - air volume measurements are not covered by Envirolab's NATA accreditation.                                                                                                                                                     |
| Metals-021         | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                  |
| Metals-022         | Determination of various metals by ICP-MS.                                                                                                                                                                                                                                                                    |
|                    | Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.                                                                                                                                             |
|                    | Salt forms (e.g. FeO, PbO, ZnO) are determined stoichiometrically from the base metal concentration.                                                                                                                                                                                                          |

| QUALIT           | Y CONTROL | Metals | on filters         |            |      | Du   | plicate |      | Spike Recovery % |      |  |
|------------------|-----------|--------|--------------------|------------|------|------|---------|------|------------------|------|--|
| Test Description | Units     | PQL    | Method             | Blank      | #    | Base | Dup.    | RPD  | LCS-1            | [NT] |  |
| Date prepared    | -         |        |                    | 17/05/2024 | [NT] |      | [NT]    | [NT] | 17/05/2024       |      |  |
| Date analysed    | -         |        |                    | 17/05/2024 | [NT] |      | [NT]    | [NT] | 17/05/2024       |      |  |
| Antimony         | µg/filter | 5      | Metals-020/021/022 | <5         | [NT] |      | [NT]    | [NT] | 109              |      |  |
| Arsenic          | µg/filter | 2      | Metals-020/021/022 | <2         | [NT] |      | [NT]    | [NT] | 117              |      |  |
| Cadmium          | µg/filter | 0.5    | Metals-020/021/022 | <0.5       | [NT] |      | [NT]    | [NT] | 112              |      |  |
| Lead             | µg/filter | 1      | Metals-020/021/022 | <1         | [NT] |      | [NT]    | [NT] | 109              |      |  |
| Mercury          | µg/filter | 0.2    | Metals-020/021/022 | <0.2       | [NT] |      | [NT]    | [NT] | 88               |      |  |
| Beryllium        | µg/filter | 0.5    | Metals-020/021/022 | <0.5       | [NT] |      | [NT]    | [NT] | 118              |      |  |
| Chromium         | µg/filter | 0.5    | Metals-020/021/022 | <0.5       | [NT] |      | [NT]    | [NT] | 114              |      |  |
| Cobalt           | µg/filter | 0.5    | Metals-020/021/022 | <0.5       | [NT] |      | [NT]    | [NT] | 115              |      |  |
| Manganese        | µg/filter | 0.5    | Metals-020/021/022 | <0.5       | [NT] |      | [NT]    | [NT] | 116              |      |  |
| Nickel           | µg/filter | 1      | Metals-020/021/022 | <1         | [NT] |      | [NT]    | [NT] | 113              |      |  |
| Selenium         | µg/filter | 5      | Metals-020/021/022 | <5         | [NT] |      | [NT]    | [NT] | 111              |      |  |
| Vanadium         | µg/filter | 1      | Metals-020/021/022 | <1         | [NT] |      | [NT]    | [NT] | 117              |      |  |
| Tin              | µg/filter | 2      | Metals-020/021/022 | <2         | [NT] |      | [NT]    | [NT] | 113              |      |  |
| Barium           | µg/filter | 1      | Metals-020/021/022 | <1         | [NT] |      | [NT]    | [NT] | 114              |      |  |
| Copper           | µg/filter | 0.5    | Metals-020/021/022 | <0.5       | [NT] |      | [NT]    | [NT] | 113              |      |  |
| Phosphorus       | µg/filter | 2      | Metals-020/021/022 | <2         | [NT] |      | [NT]    | [NT] | 112              |      |  |
| Silver           | µg/filter | 0.5    | Metals-020/021/022 | <0.5       | [NT] |      | [NT]    | [NT] | 120              |      |  |
| Thallium         | µg/filter | 2      | Metals-020/021/022 | <2         | [NT] |      | [NT]    | [NT] | 113              |      |  |
| Zinc             | µg/filter | 1      | Metals-020/021/022 | <1         | [NT] |      | [NT]    | [NT] | 115              |      |  |

| QUALITY CON                                           | TROL: Meta   | ls in <u>wate</u> | r - mass <u>units</u>    |            |   | Du         | plicate      |     | S <u>pike Re</u> | covery %     |
|-------------------------------------------------------|--------------|-------------------|--------------------------|------------|---|------------|--------------|-----|------------------|--------------|
| Test Description                                      | Units        | PQL               | Method                   | Blank      | # | Base       | Dup.         | RPD | LCS-W6           | 350913-3     |
| Antimony                                              | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         | _   | [NT]             | [NT]         |
| Arsenic                                               | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Cadmium                                               | μg           | 0.05              | Metals-022               | <0.05      | 2 | <0.05      | [NT]         |     | [NT]             | [NT]         |
| Lead                                                  | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Mercury                                               | μg           | 0.5               | Metals-021               | <0.5       | 2 | <10        | <10          | 0   | [NT]             | [NT]         |
| Beryllium                                             | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Chromium                                              | μg           | 0.5               | Metals-022               | <0.5       | 2 | 0.6        | [NT]         |     | [NT]             | [NT]         |
| Cobalt                                                | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Manganese                                             | μg           | 3                 | Metals-022               | <3         | 2 | <3         | [NT]         |     | [NT]             | [NT]         |
| Nickel                                                | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Selenium                                              | hâ           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Vanadium                                              | hд           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Tin                                                   | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Barium                                                | hд           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Copper                                                | hâ           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Silver                                                | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Thallium                                              | μg           | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | [NT]             | [NT]         |
| Zinc                                                  | μg           | 0.5               | Metals-022               | <0.5       | 2 | 0.8        | [NT]         |     | [NT]             | [NT]         |
| Date prepared                                         | -            |                   |                          | 15/05/2024 | 2 | 15/05/2024 | 15/05/2024   |     | 15/05/2024       | 15/05/2024   |
| Date analysed                                         | -            |                   |                          | 15/05/2024 | 2 | 15/05/2024 | 15/05/2024   |     | 15/05/2024       | 15/05/2024   |
| Antimony-Dissolved                                    | µg/L         | 1                 | Metals-022               | <1         | 2 | <1         | [NT]         |     | 96               | [NT]         |
| Arsenic-Dissolved                                     | µg/L         | 1                 | Metals-022               | <1         | 2 | <1         | [NT]         |     | 94               | [NT]         |
| Cadmium-Dissolved                                     | µg/L         | 0.1               | Metals-022               | <0.1       | 2 | <0.1       | [NT]         |     | 96               | [NT]         |
| Lead-Dissolved                                        | µg/L         | 1                 | Metals-022               | <1         | 2 | <1         | [NT]         |     | 105              | [NT]         |
| Mercury-Dissolved                                     | µg/L         | 0.05              | Metals-021               | <0.05      | 2 | <1         | <1           | 0   | 111              | 105          |
| Beryllium-Dissolved                                   | µg/L         | 0.5               | Metals-022               | <0.5       | 2 | <0.5       | [NT]         |     | 108              | [NT]         |
| Chromium-Dissolved                                    | µg/L         | 1                 | Metals-022               | <1         | 2 | 3          | [NT]         |     | 93               | [NT]         |
| Cobalt-Dissolved                                      | µg/L         | 1                 | Metals-022               | <1         | 2 | <1         | [NT]         |     | 96               | [NT]         |
| Manganese-Dissolved                                   | µg/L         | 5                 | Metals-022               | <5         | 2 | <5         | [NT]         |     | 93               | [NT]         |
| Nickel-Dissolved                                      | µg/L         | 1                 | Metals-022               | <1         | 2 | 1          | [NT]         |     | 94               | [NT]         |
| Selenium-Dissolved                                    | μg/L         | 1                 | Metals-022               | <1         | 2 | <1         | [NT]         |     | 99               | [NT]         |
|                                                       | μg/L         | 1                 | Metals-022               | <1         | 2 | <1         | [NT]         |     | 94               | [NT]         |
| Vanadium-Dissolved                                    |              |                   | Metals-022               | <1         | 2 | <1         | [NT]         |     | 97               | [NT]         |
| Vanadium-Dissolved<br>Tin-Dissolved                   | µg/L         | 1                 | Wictui3-022              |            |   |            | 1            | 1   |                  |              |
|                                                       | μg/L<br>μg/L | 1                 | Metals-022               | <1         | 2 | <1         | [NT]         |     | 99               | [NT]         |
| Tin-Dissolved                                         |              |                   |                          | <1         | 2 | <1<br><1   | [NT]<br>[NT] |     | 99<br>94         | [NT]<br>[NT] |
| Tin-Dissolved<br>Barium-Dissolved                     | μg/L<br>μg/L | 1                 | Metals-022               |            | 2 | <1         | [NT]         |     | 94               | [NT]         |
| Tin-Dissolved<br>Barium-Dissolved<br>Copper-Dissolved | µg/L         | 1                 | Metals-022<br>Metals-022 | <1         |   |            |              |     |                  |              |

| QUALITY CC          | NTROL: Meta | ls in <u>wat</u> e | r - mass un <u>its</u> |       |   | <u> </u>   | plicate    |     | Spik <u>e R</u> e | ecovery %  |
|---------------------|-------------|--------------------|------------------------|-------|---|------------|------------|-----|-------------------|------------|
| Test Description    | Units       | PQL                | Method                 | Blank | # | Base       | Dup.       | RPD | [NT]              | 350913-8   |
| Antimony            | μg          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Arsenic             | μg          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Cadmium             | μg          | 0.05               | Metals-022             | [NT]  | 7 | <0.05      | <0.05      | 0   |                   | [NT]       |
| Lead                | μg          | 0.5                | Metals-022             | [NT]  | 7 | 0.5        | 0.6        | 18  |                   | [NT]       |
| Mercury             | μg          | 0.5                | Metals-021             | [NT]  | 7 | <10        | [NT]       |     |                   | [NT]       |
| Beryllium           | μg          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Chromium            | μg          | 0.5                | Metals-022             | [NT]  | 7 | 0.6        | 0.7        | 15  |                   | [NT]       |
| Cobalt              | hà          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Manganese           | hà          | 3                  | Metals-022             | [NT]  | 7 | <3         | <3         | 0   |                   | [NT]       |
| Nickel              | hà          | 0.5                | Metals-022             | [NT]  | 7 | 0.6        | 0.6        | 0   |                   | [NT]       |
| Selenium            | μg          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Vanadium            | μg          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Tin                 | hà          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Barium              | hà          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Copper              | hà          | 0.5                | Metals-022             | [NT]  | 7 | 0.8        | 0.9        | 12  |                   | [NT]       |
| Silver              | hà          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Thallium            | hà          | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | [NT]       |
| Zinc                | μg          | 0.5                | Metals-022             | [NT]  | 7 | 3          | 3          | 0   |                   | [NT]       |
| Date prepared       | -           |                    |                        | [NT]  | 7 | 15/05/2024 | 15/05/2024 |     |                   | 15/05/2024 |
| Date analysed       | -           |                    |                        | [NT]  | 7 | 15/05/2024 | 15/05/2024 |     |                   | 15/05/2024 |
| Antimony-Dissolved  | μg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 96         |
| Arsenic-Dissolved   | μg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 100        |
| Cadmium-Dissolved   | μg/L        | 0.1                | Metals-022             | [NT]  | 7 | 0.1        | 0.1        | 0   |                   | 103        |
| Lead-Dissolved      | µg/L        | 1                  | Metals-022             | [NT]  | 7 | 2          | 2          | 0   |                   | 93         |
| Mercury-Dissolved   | μg/L        | 0.05               | Metals-021             | [NT]  | 7 | <1         | [NT]       |     |                   | [NT]       |
| Beryllium-Dissolved | μg/L        | 0.5                | Metals-022             | [NT]  | 7 | <0.5       | <0.5       | 0   |                   | 109        |
| Chromium-Dissolved  | μg/L        | 1                  | Metals-022             | [NT]  | 7 | 2          | 2          | 0   |                   | 99         |
| Cobalt-Dissolved    | μg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 102        |
| Manganese-Dissolved | μg/L        | 5                  | Metals-022             | [NT]  | 7 | <5         | <5         | 0   |                   | 100        |
| Nickel-Dissolved    | μg/L        | 1                  | Metals-022             | [NT]  | 7 | 2          | 2          | 0   |                   | 101        |
| Selenium-Dissolved  | μg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 112        |
| Vanadium-Dissolved  | μg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 102        |
| Tin-Dissolved       | μg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 102        |
| Barium-Dissolved    | µg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | 1          | 0   |                   | 101        |
| Copper-Dissolved    | µg/L        | 1                  | Metals-022             | [NT]  | 7 | 3          | 3          | 0   |                   | 102        |
| Silver-Dissolved    | µg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 90         |
| Thallium-Dissolved  | µg/L        | 1                  | Metals-022             | [NT]  | 7 | <1         | <1         | 0   |                   | 92         |
| Zinc-Dissolved      | µg/L        | 1                  | Metals-022             | [NT]  | 7 | 10         | 10         | 0   |                   | 102        |

| QUALITY CON         | ITROL: Meta | ls in wate | r - mass units |       |    | Du         | plicate    |     | Spike Re | covery % |
|---------------------|-------------|------------|----------------|-------|----|------------|------------|-----|----------|----------|
| Test Description    | Units       | PQL        | Method         | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Antimony            | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Arsenic             | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Cadmium             | μg          | 0.05       | Metals-022     | [NT]  | 15 | <0.05      | [NT]       |     | [NT]     |          |
| Lead                | hд          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Mercury             | hâ          | 0.5        | Metals-021     | [NT]  | 15 | <10        | <10        | 0   | [NT]     |          |
| Beryllium           | hд          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Chromium            | hд          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Cobalt              | hд          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Manganese           | hд          | 3          | Metals-022     | [NT]  | 15 | <3         | [NT]       |     | [NT]     |          |
| Nickel              | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Selenium            | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Vanadium            | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Tin                 | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Barium              | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Copper              | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Silver              | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Thallium            | μg          | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Zinc                | μg          | 0.5        | Metals-022     | [NT]  | 15 | 0.7        | [NT]       |     | [NT]     |          |
| Date prepared       | -           |            |                | [NT]  | 15 | 15/05/2024 | 15/05/2024 |     | [NT]     |          |
| Date analysed       | -           |            |                | [NT]  | 15 | 15/05/2024 | 15/05/2024 |     | [NT]     |          |
| Antimony-Dissolved  | µg/L        | 1          | Metals-022     | [NT]  | 15 | <1         | [NT]       |     | [NT]     |          |
| Arsenic-Dissolved   | µg/L        | 1          | Metals-022     | [NT]  | 15 | <1         | [NT]       |     | [NT]     |          |
| Cadmium-Dissolved   | µg/L        | 0.1        | Metals-022     | [NT]  | 15 | 1.1        | [NT]       |     | [NT]     |          |
| Lead-Dissolved      | µg/L        | 1          | Metals-022     | [NT]  | 15 | 7          | [NT]       |     | [NT]     |          |
| Mercury-Dissolved   | µg/L        | 0.05       | Metals-021     | [NT]  | 15 | <1         | <1         | 0   | [NT]     |          |
| Beryllium-Dissolved | µg/L        | 0.5        | Metals-022     | [NT]  | 15 | <0.5       | [NT]       |     | [NT]     |          |
| Chromium-Dissolved  | µg/L        | 1          | Metals-022     | [NT]  | 15 | 4          | [NT]       |     | [NT]     |          |
| Cobalt-Dissolved    | µg/L        | 1          | Metals-022     | [NT]  | 15 | <1         | [NT]       |     | [NT]     |          |
| Manganese-Dissolved | µg/L        | 5          | Metals-022     | [NT]  | 15 | 73         | [NT]       |     | [NT]     |          |
| Nickel-Dissolved    | µg/L        | 1          | Metals-022     | [NT]  | 15 | 3          | [NT]       |     | [NT]     |          |
| Selenium-Dissolved  | µg/L        | 1          | Metals-022     | [NT]  | 15 | <1         | [NT]       |     | [NT]     |          |
| Vanadium-Dissolved  | µg/L        | 1          | Metals-022     | [NT]  | 15 | 9          | [NT]       |     | [NT]     |          |
| Tin-Dissolved       | µg/L        | 1          | Metals-022     | [NT]  | 15 | <1         | [NT]       |     | [NT]     |          |
| Barium-Dissolved    | µg/L        | 1          | Metals-022     | [NT]  | 15 | 12         | [NT]       |     | [NT]     |          |
| Copper-Dissolved    | µg/L        | 1          | Metals-022     | [NT]  | 15 | 11         | [NT]       |     | [NT]     |          |
| Silver-Dissolved    | µg/L        | 1          | Metals-022     | [NT]  | 15 | 1          | [NT]       |     | [NT]     |          |
| Thallium-Dissolved  | µg/L        | 1          | Metals-022     | [NT]  | 15 | 6          | [NT]       |     | [NT]     |          |
| Zinc-Dissolved      | µg/L        | 1          | Metals-022     | [NT]  | 15 | 19         | [NT]       |     | [NT]     |          |

| QUALITY CONT           | ROL: Metals | s in Wate | rs - mass units |            | Duplicate |            |            |     | Spike Recovery % |            |
|------------------------|-------------|-----------|-----------------|------------|-----------|------------|------------|-----|------------------|------------|
| Test Description       | Units       | PQL       | Method          | Blank      | #         | Base       | Dup.       | RPD | LCS-1            | 350913-13  |
| Date digested          | -           |           |                 | 17/05/2024 | 7         | 17/05/2024 | 17/05/2024 |     | 17/05/2024       | 17/05/2024 |
| Date analysed          | -           |           |                 | 17/05/2024 | 7         | 17/05/2024 | 17/05/2024 |     | 17/05/2024       | 17/05/2024 |
| Phosphorus             | mg          | 0.05      | Metals-020      | [NT]       | 7         | 0.07       | 0.07       | 0   | [NT]             | [NT]       |
| Phosphorus - Dissolved | mg/L        | 0.05      | Metals-020      | <0.05      | 7         | 0.2        | 0.2        | 0   | 98               | 86         |

| QUALITY CONTROL: Inorganics in Wipes |           |     |           |            | Duplicate |      |      | Spike Recovery % |            |      |
|--------------------------------------|-----------|-----|-----------|------------|-----------|------|------|------------------|------------|------|
| Test Description                     | Units     | PQL | Method    | Blank      | #         | Base | Dup. | RPD              | LCS-1      | [NT] |
| Date prepared                        | -         |     |           | 15/05/2024 | [NT]      |      |      | [NT]             | 15/05/2024 | [NT] |
| Date analysed                        | -         |     |           | 15/05/2024 | [NT]      |      |      | [NT]             | 15/05/2024 | [NT] |
| Hexavalent Cr in filter              | µg/filter | 0.1 | Inorg-118 | <0.1       | [NT]      | [NT] | [NT] | [NT]             | 96         | [NT] |

| QUALITY COI                           | QUALITY CONTROL: Miscellaneous Inorganics |       |           |            |      | Duplicate |      |      | Spike Recovery % |      |
|---------------------------------------|-------------------------------------------|-------|-----------|------------|------|-----------|------|------|------------------|------|
| Test Description                      | Units                                     | PQL   | Method    | Blank      | #    | Base      | Dup. | RPD  | LCS-W6           | [NT] |
| Date prepared                         | -                                         |       |           | 15/05/2024 | [NT] |           | [NT] | [NT] | 15/05/2024       |      |
| Date analysed                         | -                                         |       |           | 15/05/2024 | [NT] |           | [NT] | [NT] | 15/05/2024       |      |
| Hexavalent Chromium, Cr6+ (dissolved) | mg/L                                      | 0.005 | Inorg-118 | <0.005     | [NT] |           | [NT] | [NT] | 98               |      |
| Hexavalent Chromium, Cr <sup>6+</sup> | µg/sample                                 | 5     | Inorg-118 | <5         | [NT] | [NT]      | [NT] | [NT] | [NT]             | [NT] |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| Quality Control Definitions        |                                                                                                                                                                                                                                  |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                    |                                                                                                                                                                                                                                  |  |  |  |  |  |
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |  |  |  |  |  |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |  |  |  |  |  |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |  |  |  |  |  |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |  |  |  |  |  |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |  |  |  |  |  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

#### **Report Comments**

Metals in water - mass units - The PQL has been raised for Hg due to the sample matrix requiring dilution.



Australian Government

#### **Department of Industry, Science and Resources**

## National Measurement Institute



Page: 1 of 4

#### **INTERIM REPORT OF ANALYSIS**

|                 |                            |                                 | Report No. RN1430789 |
|-----------------|----------------------------|---------------------------------|----------------------|
| Client :        | EKTIMO PTY LTD             | Job No.                         | : EKTI01/240507      |
|                 | 52 COOPER ROAD             | Quote No.                       | : QT-02257           |
|                 | COCKBURN CENTRAL WA 6164   | Order No.                       | : W013621            |
|                 |                            | Date Received                   | : 7-MAY-2024         |
| Attention :     | AARON DAVIS                | Sampled By                      | : CLIENT             |
| Project Name :  |                            |                                 |                      |
| Your Client Ser | vices Manager : Tim Reddan | Phone                           | : 03 9644 4854       |
| Lab Reg No.     | Sample Ref                 | Sample Description              |                      |
| N24/009798      | AUT240429A                 | FILTER RESIN RINSE N21814 JOB N | O. R016899           |
| N24/009799      | AUT240429B                 | FILTER RESIN RINSE N21815 JOB N | O. R016899           |

| Lab Reg No.                      |                 | N24/009798   | N24/009799   |            |
|----------------------------------|-----------------|--------------|--------------|------------|
| Date Sampled                     |                 | Not Provided | Not Provided |            |
| Sample Reference                 |                 | AUT240429A   | AUT240429B   |            |
|                                  | Units           |              |              | Method     |
| Components                       |                 |              |              |            |
| Cartridge Preparation Charge     |                 | AUT240429A   | AUT240429B   |            |
| Dioxin/Furan International Toxic | Equivalency (iT | EQ)          |              |            |
| Lower bound iTEQDF               | pg              | 2.2          | 3.7          | AUT_METOO2 |
| Middle bound iTEQDF              | pg              | 5.6          | 7.0          | AUT_METOO2 |
| Upper bound iTEQDF               | pg              | 9.0          | 10           | AUT_METOO2 |
| Dioxin and Furan Toxic congene   | ers             |              |              |            |
| 2378-TCDF (51207-31-9)           | pg              | 22           | 31           | AUT_METOO2 |
| 2378-TCDD (1746-01-6)            | pg              | <2           | <2           | AUT_METOO2 |
| 12378-PeCDF (57117-41-6)         | pg              | < 5          | 6.9          | AUT_METOO2 |
| 23478-PeCDF (57117-31-4)         | pg              | < 3          | <5           | AUT_METOO2 |
| 12378-PeCDD (40321-76-4)         | pg              | < 3          | <2           | AUT_METOO2 |
| 123478-HxCDF (70648-26-9)        | pg              | <2           | <1           | AUT_METOO2 |
| 123678-HxCDF (57117-44-9)        | pg              | <2           | 1.6          | AUT_METOO2 |
| 234678-HxCDF (60851-34-5)        | pg              | < 1          | <1           | AUT_MET002 |
| 123789-HxCDF (72918-21-9)        | pg              | <2           | <2           | AUT_MET002 |
| 123478-HxCDD (39227-28-6)        | pg              | < 3          | <2           | AUT_METOO2 |
| 123678-HxCDD (57653-85-7)        | pg              | <2           | <2           | AUT_METOO2 |
| 123789-HxCDD (19408-74-3)        | pg              | < 3          | <2           | AUT_METOO2 |
| 1234678-HpCDF (67562-39-4)       | pg              | < 3          | 3.1          | AUT_METOO2 |
| 1234789-HpCDF (55673-89-7)       | pg              | <2           | <2           | AUT_METOO2 |
| 1234678-HpCDD (35822-46-9)       | pg              | < 3          | 6.8          | AUT_METOO2 |
| OCDF (39001-02-0)                | pg              | <2           | 2.9          | AUT_METOO2 |
| OCDD (3268-87-9)                 | pg              | 16           | 23           | AUT_METOO2 |
| Total homologue groups           |                 |              |              |            |
| Total TCDF isomers               | pg              | 2820         | 3670         | AUT_MET002 |
| Total TCDD isomers               | pg              | 5.7          | 5.9          | AUT_MET002 |
| Total PeCDF isomers              | pg              | 93           | 130          | AUT_MET002 |
| Total PeCDD isomers              | pg              | <20          | <10          | AUT_MET002 |
| Total HxCDF isomers              | pg              | 3.6          | 13           | AUT_MET002 |

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

#### **INTERIM REPORT OF ANALYSIS**

Page: 2 of 4 Report No. RN1430789

| Lab Reg No.                      |                | N24/009798   | N24/009799   | · |            |
|----------------------------------|----------------|--------------|--------------|---|------------|
| Date Sampled                     |                | Not Provided | Not Provided |   |            |
| Sample Reference                 |                | AUT240429A   | AUT240429B   |   |            |
|                                  | Units          |              |              |   | Method     |
| Total homologue groups           |                |              | н н          |   |            |
| Total HxCDD isomers              | pg             | 13           | 18           |   | AUT MET002 |
| Total HpCDF isomers              | pg             | <5           | 3.6          |   | AUT MET002 |
| Total HpCDD isomers              | pg             | 4.4          | 14           |   | AUT MET002 |
| Labelled Field Surrogate Recove  | . •            |              | II           |   | _          |
| 23478-PeCDF (13C12) (11684       |                | 104          | 125          |   | AUT MET002 |
| 123478-HxCDF (13C12) (1144       |                | 103          | 114          |   | AUT MET002 |
| 123478-HxCDD (13C12) (1097       |                | 114          | 125          |   | AUT MET002 |
| 1234789-HpCDF (13C12) (109       |                | 102          | 114          |   | AUT METOO2 |
| Labelled Internal Standard Reco  |                |              |              |   |            |
| 2378-TCDF (13C12) (89059-46      | 1              | 67           | 54           |   | AUT METOO2 |
| 2378-TCDD (13C12) (76523-4       | -              | 63           | 50           |   | AUT METOO2 |
| 12378-PeCDF (13C12) (10971)      | -              | 73           | 61           |   | AUT METOO2 |
| 12378-PeCDD (13C12) (10971       |                | 78           | 67           |   | AUT METOO2 |
| 123678-HxCDF (13C12) (1168       |                | 85           | 81           |   | AUT METOO2 |
| 123678-HxCDD (13C12) (1097       |                | 80           | 73           |   | AUT METOO2 |
| 1234678-HpCDF (13C12) (109       | ,              | 90           | 83           |   | AUT_MET002 |
| 1234678-HpCDD (13C12) (108       |                | 86           | 83           |   | AUT_MET002 |
| OCDD (13C12) (114423-97-1)       |                | 67           | 63           |   | AUT_MET002 |
| Extraction                       | 70             | 07           | 05           |   | AUT_WETOUZ |
| Pressurised Solvent Extraction   |                | 16-MAY-2024  | 16-MAY-2024  |   | AUT MET 01 |
| Purification                     |                | 10-IWA1-2024 | 10-IWA1-2024 |   | AUT_WET_UT |
|                                  |                | 22-May-24    | 22-May-24    |   | AUT MET 01 |
| Acid Partioning                  |                | 22-May-24    |              |   | AUT_MET_01 |
| Automated column chromatogra     |                | ,            | 22-May-24    |   | AUT_WET_UT |
| Dioxin/Furan International Toxic | Equivalency Fa |              | 0.1          |   | AUT METOOD |
| ITEF 2378-TCDF                   |                | 0.1          | 0.1          |   | AUT_MET002 |
| ITEF 2378-TCDD                   |                | 1            | 1            |   | AUT_MET002 |
| iTEF 12378-PeCDF                 |                | 0.05         | 0.05         |   | AUT_MET002 |
| iTEF 23478-PeCDF                 |                | 0.5          | 0.5          |   | AUT_MET002 |
| iTEF 12378-PeCDD                 |                | 0.5          | 0.5          |   | AUT_MET002 |
| iTEF 123478-HxCDF                |                | 0.1          | 0.1          |   | AUT_MET002 |
| iTEF 123678-HxCDF                |                | 0.1          | 0.1          |   | AUT_MET002 |
| iTEF 234678-HxCDF                |                | 0.1          | 0.1          |   | AUT_MET002 |
| iTEF 123789-HxCDF                |                | 0.1          | 0.1          |   | AUT_MET002 |
| iTEF 123478-HxCDD                |                | 0.1          | 0.1          |   | AUT_MET002 |
| iTEF 123678-HxCDD                |                | 0.1          | 0.1          |   | AUT_MET002 |
| iTEF 123789-HxCDD                |                | 0.1          | 0.1          |   | AUT_MET002 |
| iTEF 1234678-HpCDF               |                | 0.01         | 0.01         |   | AUT_MET002 |
| iTEF 1234789-HpCDF               |                | 0.01         | 0.01         |   | AUT_MET002 |
| iTEF 1234678-HpCDD               |                | 0.01         | 0.01         |   | AUT_MET002 |
| itef ocdf                        |                | 0.001        | 0.001        |   | AUT_MET002 |
| iTEF OCDD                        |                | 0.001        | 0.001        |   | AUT_MET002 |

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

#### **INTERIM REPORT OF ANALYSIS**

Page: 3 of 4 Report No. RN1430789

| Lab Reg No.                     |        | N24/009798   | N24/009799   |            |
|---------------------------------|--------|--------------|--------------|------------|
| Date Sampled                    |        | Not Provided | Not Provided |            |
| Sample Reference                |        | AUT240429A   | AUT240429B   |            |
|                                 | Units  |              |              | Method     |
| Analysis Dates                  |        |              |              |            |
| Emission Extracted Dioxin       |        | 16-MAY-2024  | 16-MAY-2024  | AUT_MET002 |
| Emission HRMS Dioxin analysis   |        | 31-MAY-2024  | 31-MAY-2024  | AUT_MET002 |
| Emission Confirmation Dioxin ar | alysis | 1-JUN-2024   | 1-JUN-2024   | AUT_MET002 |
| Emission Holding times          |        | Extract/Ana  | Extract/Ana  | AUT_MET002 |

All results are expressed on an as received weight basis. iTEF defined in USEPA publication EPA/625/3-89/016 (1989), WHO TEFs defined by Van den Berg et al., Toxicol. Sci. 93(2), pp. 223241 (2006). Labelled surrogates acceptance criteria: 70-130% for field - 40-130% for Tetra/Penta/Hexa - 25-130% for Hepta/Octa -

40-120% for PCB congeners.

Gavin Stevenson, Analyst Australian Ultra Trace Laboratory Accreditation No. 198

06-JUN-2024

Nino Piro, Analyst Australian Ultra Trace Laboratory Accreditation No. 198



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) as received and tested.

\* Denotes the analyte or test method is not within our ISO/IEC 17025 scope of accreditation.

Measurement Uncertainty is available upon request.

Note: Sampling date(s) have been provided by the client.

Note: Where sampling dates are not provided NMI is unable to determine compliance to any applicable Holding Time requirements

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

#### **INTERIM REPORT OF ANALYSIS**

The testing was undertaken at:

105 Delhi Road, North Ryde, NSW, 2113

Page: 4 of 4 Report No. RN1430789

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

# Ektimo

ektimo.com.au 1300 364 005

**MELBOURNE** (Head Office) 26 Redland Drive Mitcham VIC 3132 AUSTRALIA

**SYDNEY** 6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG 1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

**PERTH** 52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

**BRISBANE** 3/109 Riverside Place Morningside QLD 4170 AUSTRALIA